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Introduction	


Sparse aerosol representations include sectional, modal, 
and moment models whereby the aerosol is classified into 
a basis consisting of a typically small number of size 
sections, modes, or moments. For out purposes, the term 
“sparse” will refer to the replacement of an essentially 
continuous particle size/composition population by a 
(typically small) set of delta functions or abscissas and 
weights. 
 
This poster describes a class of sparse particle models 
derived from linear programming (LP). The widely used 
quadrature method of moments (QMOM) [1] is shown to 
fall into this class. Here it shown that a wider class of 
sparse aerosol models can be constructed, which are not 
required to be based on the moments of the particle 
distribution function. 

                     	



Figure 3. Similar to Fig. 2 except that the sectional constraints are 
replaced by moment constraints. Dashed and solid bounds derive from the 
first 6 and first 20 integral radial moments, respectively. 

Recovery of the QMOM from LP	



Linear Programming	


The linear programming problems treated here are all of 
the same general form: 

Minimize cost function:!

Together with:!

c ⋅wT

Subject to equality constraints:! ak ⋅w
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Figure  1.  Quadrature  abscissas  and  weights  obtained  by 
constraining the first 6 integral moments to those of the normalized 
test aerosol distribution shown in the insert. The test distribution is 
from  Hoppel  et  al.  [2]  and  is  their  distribution  #4.  The  three 
quadrature points are each split among neighboring grid points due 
to limited resolution of the grid. Otherwise perfect agreement with 
QMOM matrix-based moment inversion is obtained.	



(LP)!

w = {w1,w2,,wn}

c = {c1,c2,,cn}

Here                                    is a vector of variable amplitudes!
such as the number of particles at grid location ri , and n is the!
number of grid locations.                                is the vector of!
cost function coefficients. Each of the equality constraints takes!
the form shown in (LP) for some specified moment or measur-!
ment Mk:            !

Mk = σ k (r) f (r)dr0
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Rigorous Nested Bounds on Optical 
Extinction	


Minimizing, instead, the negative of the cost function 
(LP) maximizes the cost function, yielding a second 
sparse solution and a pair of bounds. Because the 
feasible set either stays constant or shrinks as new 
constraints are added to a previously existing set, nested 
bounds are obtained as illustrated in Fig. 2. The extent 
to which the bounds are refined through a doubling and 
then quadrupling of the number of sections provides a 
quantitative measure of information achievable through 
sub-grid resolution. 

Figure 2. Nested pairs of upper and lower bounds to the extinction 
coefficient. Obtained by partitioning the Hoppel test distribution into 
various  numbers  of  equally-spaced radial  size  sections  between 0 
and 0.5 microns and using the known particle number concentrations 
in each section as LP constraints. Dotted, dashed, and solid bounds 
result from partitioning into 10, 20, and 40 sections, respectively. The 
center  (red)  curve  gives  the  extinction  coefficient  for  the  test 
distribution itself as a function of wavelength from Mie theory.	



Because of their similar structure, the cost function and any 
one of the equality constraint vectors are interchangeable. 
Thus one can bound extinction coefficient at a given 
wavelength from moment constraints (Fig. 3) or bound a 
moment from extinction measurements as shown below.  
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Figure  4.  The  inverse  problem:  bounding  moments  from  extinction 
simulated measurements. Following [3] we use the Sage II wavelengths 
(0.385,  0.525,  and  1.02  microns),  dashed  bounds.  Solid  bounds  result 
from a random set of 20 wavelength constraints selected from the spectral 
range of  Figs.  2.  and 3.  A particle number (normalization) constraint, 
necessary to get reasonable upper bounds for small k, has been added.	



where            is a known kernel function, such as a light extinction!
kernel, and ri  (wi ) are abscissas (weights). f(r) is the, generally !
unknown, radial size distribution.  For                  ,  Mk recovers !
the ordinary radial moments. The linear programming problem (LP) !
is solved using the simplex method of Danzig, illustrated below.       !
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