Perturbed-parameter Simulations of the MJO with CAM5

James Boyle, Stephen Klein, Don Lucas, John Tannahill, Shaocheng Xie, Ken Sperber **Rich Neale** Program for Climate Model Diagnosis and Intercomparison / Lawrence Livermore National Laboratory National Center for Atmospheric Research

Motivation and Approach

- > Modelers would like to understand how their climate models could better simulate an MJO
 - CAM5 is noticeably worse than CAM4 which was quite good (Subramanian et al. 2012). Why?
- > We systematically explore the dependencies of CAM5's MJO simulation on uncertain parameters, with a "perturbed-parameter ensemble" technique
 - To what extent, do the parameters control the interactions of the parameterized processes and influence the MJO?
- Are better MJOs within tuning ranges? Or are new parameterizations needed?
- > We wish to more fully explore the range of model MJO behaviors as a function of parameters

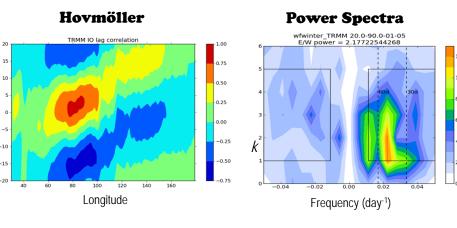
Perturbed Parameter Simulations

"Climate":

- CAM5.1 @ 2° resolution
- 5-year "AMIP" simulations (i.e. prescribed SSTs

MJO Metrics

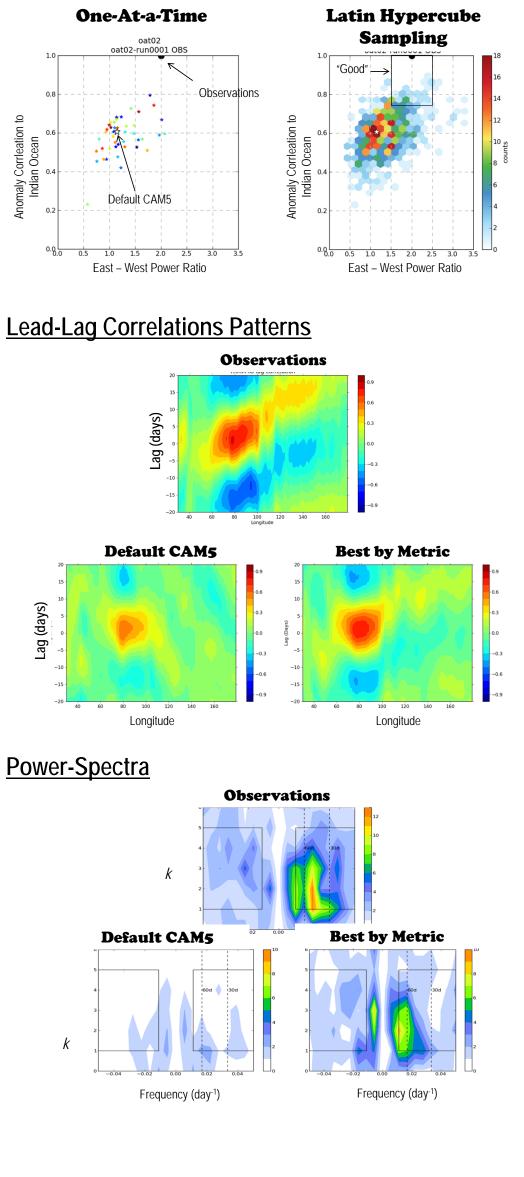
- a) Correlation coefficient with the pattern of lead-lag correlation coefficients of band-passed filtered
 - 5° N-5° S averaged precipitation with that in the Indian Ocean (70° -90° E)
- b) East-west power ratio of precipitation variance in wavenumbers 1-5 and periods 20 – 90 days



Variability in Metrics

Lag (Days)

Ano



Surrogate Model

What Parameters Matter? What values improve the simulations?

General approach

- Fit a mathematical "surrogate" model that relates the predictands (metrics of MJO simulation) to the predictors (physics parameters perturbed)
- Use "surrogate" model to tell you which predictors have influence and which are immaterial
- Create a new "surrogate" model with only the important predictors
- Use the new "surrogate" model and the observed predictand values to create likelihood estimates of the predictors

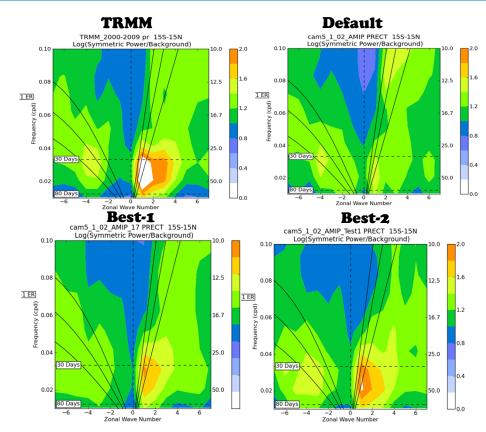
Specific methods used

- Sparse Polynomial Chaos Expansion (3rd order) (PCE)
- Random Forest Regression (ET) (Breiman 2001)

Deep convection parameters matter

atCorACIO				,					
PCE ET								т	
								μ.	

Improved MJO



Best-1: best setting based on initial creteria Best-2: guidance from UQ Minimum values of c0_ocn, tau, and conv_ke. dmpdz used the default, alfa used default. UQ indicated the dmpdz was about right and alfa had low sensitivity

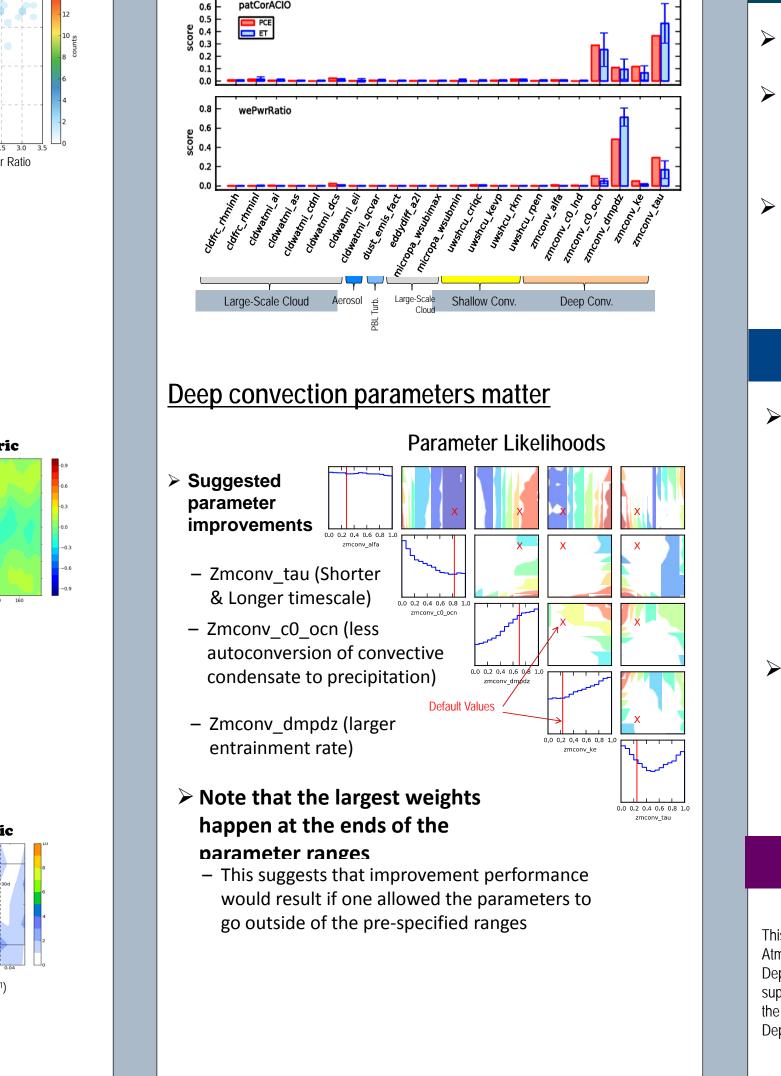
Preliminary Conclusions

> Perturbed-parameter technique allows a more thorough exploration of model sensitivities than normally done > Improved simulations result from making it harder for deep convection to occur but when it occurs reducing the drying tendency of convection while trying get the convection over faster \succ Issues: • 5 years is a bit short and introduces noise • 1100 simulations is insufficient for a 22 dimensional space

- for 2000-05) Two ensembles:
 - Perturbed each of 22 parameters in CAM's physical parameterizations ONE-AT-A-TIME ("OAT") (# of simulations = $2^{22} + 1 = 45$)
 - Simultaneously perturb 22 parameters using Latin Hypercube Sampling ("LHS") (# of simulations = 1100)
- These simulations were performed for another project \rightarrow Only hourly (total) precipitation is available for our analysis

Parameters Varied

_	modelSection_modelVariable	variable description	low value	default	high value	
Large- Scale – Cloud	cldfrc_rhminh	Threshold RH for fraction high stable clouds	0.65	0.8	0.85	
	cldfrc_rhminl	Threshold RH for fraction low stable clouds	0.8	0.8875	0.99	
	cldwatmi_ai	Fall speed parameter for cloud ice	350	700	1400	
	cldwatmi_as	Fall speed parameter for snow	5.86	11.72	23.44	
	cldwatmi_cdnl	Cloud droplet number limiter	0	0	1e+06	
	cldwatmi_dcs	Autoconversion size threshold for ice to snow	0.0001	0.0004	0.0005	
	cldwatmi_eii	Collection efficiency aggregation of ice	0.001	0.1	1	
	cldwatmi_qcvar	Inverse relative variance of sub-grid cloud water	0.5	2	5	
erosol	dust_emis_fact	Dust emission tuning factor	0.21	0.35	0.86	
BL Turb Large -Scale -{ Cloud		Moist entrainment enhancement parameter	10	30	50	
	micropa_wsubimax	Maximum sub-grid vertical velocity for ice nucleation	0.1	0.2	1	
	1 micropa_wsubmin	Minimum sub-grid vertical velocity for liquid nucleation	0	0.2	1	
	uwshcu_criqc	Maximum updraft condensate	0.0005	0.0007	0.0015	
hallow	uwshcu_kevp	Evaporative efficiency	1e-06	2e-06	2e-05	
Conv.	uwshcu_rkm	Fractional updraft mixing efficiency	8	14	16	
	uwshcu_rpen	Penetrative updraft entrainment efficiency	1	5	10	
Deep Conv.	zmconv_alfa	Initial cloud downdraft mass flux	0.05	0.1	0.6	
	zmconv_c0_Ind	Deep convection precipitation efficiency over land	0.001	0.0059	0.01	
	zmconv_c0_ocn	Deep convection precipitation efficiency over ocean	0.001	0.045	0.1	
	zmconv_dmpdz	Parcel fractional mass entrainment rate	0.0002	0.001	0.002	
	zmconv_ke	Evaporation efficiency parameter	5e-07	1e-06	1e-05	
	zmconv_tau	Convective time scale	1800	3600	28800	



Future Work

- > Next steps
 - More diagnostics from longer simulations for selected runs
 - Would an improved simulation result if we just change the parameters that are important, rather than all 22 simultaneously
 - Would we get a different impression from coupledocean atmosphere modeling?
- Comparison with hindcasts results (not shown) today):
 - Difference: c0_ocn is unimportant for precip in hindcasts (it matters for OLR/WVP)
 - Similarity: shorter tau is a better solution

Acknowledgements

This work is supported by the Regional and Global Climate Modeling program and the Atmospheric System Research program for the Office of Science of the United States Department of Energy. The perturbed-parameter simulations were performed with the support from the Climate Science for a Sustainable Energy Future (CSSEF) project of the Earth System Modeling Program for the Office of Science of the United States Department of Energy.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-POST- 62336