Investigating variability in the Australian monsoon and rainfall with cluster analysis

Stuart Evans, Roger Marchand, Thomas Ackerman
Department of Atmospheric Sciences, University of Washington
Joint Institute for the Study of the Atmosphere and Ocean

Motivation
- The Australian monsoon is a major component of global climate and the primary source of rainfall for northern Australia.
- Previous studies have shown that the monsoon has substantial interannual variability (onset, intensity) and intraseasonal variability (active and break periods).
- The Madden-Julian Oscillation (MJO) is the major contributor to intraseasonal variability in the tropical Indo-Pacific.

Methods
- We use a clustering algorithm acting on ERA-Interim reanalysis data to define a set of 8 atmospheric states for the region surrounding Darwin (red box at right).
- States are defined in terms of surface pressure and 3D temperature, winds, and humidity in the region.
- We classify all ERA-Interim observation times into one of the 8 states, creating a 33 year, 4x daily record of atmospheric state at Darwin.
- We find 8 states, two (States 7 & 8) of which we identify as the active and break periods of the monsoon.

Role of ENSO
- Our study (E12) defines monsoon onset / retreat each season as the first / last 24 hour periods classified as active monsoon.
- The variability in onset date is strongly correlated with ENSO, while the variability in retreat is uncorrelated. These findings are in agreement with other studies, e.g. Drozdovsky 1996 (D96) and Holland 1990 (H90).
- No such relationship exists for retreat date.

Role of the MJO
- Likelihood of the monsoon being active
 - When the MJO is present at Darwin (phases 4-7) the monsoon is much more likely to be in the active state.
 - When the MJO is away from Darwin (phases 1-2) the monsoon is more likely to be in the break state.
- Active period initiation / termination
 - Active periods begin when the MJO arrives at Darwin (phases 3-4).
 - Active periods end when the MJO moves away from Darwin (phases 7-8).

Contributions to precipitation trend at Darwin
- Divide trend in rainfall (ΔR) into contributions from the trends in state mean rainfall (ΔP) and trends in state frequency of occurrence (ΔN).
$$\Delta R = \sum_i N_i \Delta P_i + \sum_i \Delta N_i P_i$$
- Trend in rainfall driven by increase in frequency of active monsoon (State 7).
- Contribution from break monsoon equally divided between frequency and mean precip.
- Dry and shoulder seasons contribute little.

Precipitation
- Monsoon states rain much more frequently than other states.
- The active monsoon rains much harder than other states.

Thoughts? Questions? Email sevans@atmos.washington.edu