The Role of Cloud Microphysics in the Simulation of Mesoscale Convective Systems (MCS) in the Tropical Western Pacific

K. Van Weverberg1,2, A.M. Vogelmann1, W. Lin1, E.P. Luke1, A. Cialella1, P. Minnis3, M. Khaiyer4, E.R. Boer5, M.P. Jensen1
1 Brookhaven National Laboratory, 2 Université catholique de Louvain, 3 National Aeronautics and Space Administration Langley Research Center, 4 Science Systems and Applications, Inc., 5 Entropy Control, Inc.

Motivation

- Tropical deep convection and related high clouds are crucial to the global radiation and water balance, yet remain a challenge for CRMs
- Physical reasons for discrepancies between different models should be understood to improve the simulation of such clouds
- Sensitivity of CRM MCS simulations to various microphysics parameterizations using a very large TWP domain size

1. Simulation details

- WRF 6-day simulations December 2003, driven by GFS
- 1725 × 1110 × 35 gp, Δx=4 km, sensitivity with 3 microphysics schemes:
 - WSM6: 1-moment scheme (Hong and Lim 2006)
 - THOM: hybrid scheme (2-moment for ice and rain)
 - MORR: 2-moment scheme (Morrison et al. 2009)

2. ISCCP Cloud Classification

- ISCCP classifications based on CTP and COT for GOES and WRF

3. MCS Statistics

- MCS identification and tracking algorithm by Boer and Ramanathan (1997) applied to GOES and simulated cloud fields:

4. MCS Microphysics

- CFADs for ice and snow mass and velocities

Summary

- Schemes that exhibit slow ice/snow sedimentation rates aloft have more numerous and larger MCSs with larger anvils
- Complex 2-moment schemes do not outperform 1-moment schemes (nucleation, sedimentation more important than size distributions)
- Limited variability among the investigated schemes in terms of surface precipitation. All exhibit overestimations of 20% (not shown)

References