



# Zifeng Lu<sup>1</sup>, David G. Streets<sup>1</sup>, Benjamin de Foy<sup>2</sup>, and Nickolay A. Krotkov<sup>3</sup>

Decision and Information Sciences Division, Argonne National Laboratory, Argonne, IL; <sup>2</sup> Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO; <sup>3</sup> Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD

### **Background & Objective**

### Background

- India has surpassed the U.S. to be the world's second largest SO<sub>2</sub> emitting country, after China, since 2010  $\succ$  the rapid economic development & the absence of regulations
- Coal-fired powers are the biggest SO<sub>2</sub> emission sources in India  $\succ$  ~50% of the national SO<sub>2</sub> emissions
- $\geq$  ~70% of the emission increment during 1996–2010
- Inconsistency in Indian SO<sub>2</sub> trends: Bottom-up emissions: increased dramatically since the mid-1990s  $\succ$  National mean SO<sub>2</sub> concentrations from the official monitoring network: **declined** since 2000
- Therefore, an independent data source is needed to verify the real  $SO_2$  situation in India. For example, > Satellite remote sensing from the **Ozone Monitoring Instrument (OMI)**

### **Objective**

- Use a unit-based methodology to develop the SO<sub>2</sub> emission inventory for the Indian coal-fired power sector
- Apply the oversampling technique and improved OMI retrievals to study the relationship between OMI SO<sub>2</sub> observations and SO<sub>2</sub> emissions over Indian coal-fired power plants
- Study the interannual trend of SO<sub>2</sub> emissions from the space during the OMI era of 2005–2012

## Methods & Data Sets

### **Bottom-Up, Unit-Based SO<sub>2</sub> Emission Inventory**

- Indian coal-fired power units with capacity >20 MW are included  $\succ$  165 plants, > 720 units
  - > Unit-level information is collected: geographical location, boiler size and type, coal type and sulfur content, electricity generation, specific coal consumption, SO<sub>2</sub> control technology, exact time when the unit came into operation and/or retired, etc.



• Total SO<sub>2</sub> emission (*E*) from coal-fired power plants for year *i*:



### **OMI SO<sub>2</sub> Retrievals**

- Data source
- $\succ$  Planetary boundary layer daily SO<sub>2</sub> data in the NASA OMSO2 Level-2 product • Filters
- > Remove pixels with large solar zenith angle, high radiative cloud fraction and terrain height, at swath edges, or affected by row anomalies
- Corrections
- > Pacific sector correction, local AMF correction, and local bias correction • Oversample the valid pixels with corrected vertical columns at a 2  $km \times 2 km$  grid for the whole domain of India



# OMI Observations of Interannual Increases in SO<sub>2</sub> Emissions from Indian Coal-Fired Power Plants: 2005–2012

[Lu et al., 2011; Xing et al., 2013]

[Lu et al., 2011]

[CPCB, 2012]





SO<sub>2</sub> emissions (Gg year<sup>-1</sup>)

• A number of satellite  $SO_2$  hot spots are observed over India, and they match the locations and the amounts of SO<sub>2</sub> emissions of large coal-fired power plants reasonably well

 Seasonality  $\succ$  No significant seasonal variations in OMI SO<sub>2</sub> over India, different from OMI NO<sub>2</sub>  $\succ$  Monsoon is the worst period to observe SO<sub>2</sub> from OMI, similar to OMI NO<sub>2</sub>

### **Fitting Hot Spots with 2-D Gaussian Function**

 $OMI_{SO_2} = \alpha f(x, y) = \frac{\alpha}{2\pi\sigma_x \sigma_v \sqrt{1 - \rho^2}} \exp\left(-\frac{1}{2(1 - \rho^2)} \left[\frac{(x - \mu_x)^2}{\sigma_x^2} + \frac{(y - \mu_y)^2}{\sigma_v^2} - \frac{2\rho(x - \mu_x)(y - \mu_y)}{\sigma_x \sigma_v}\right]\right)$ [Fioletov et al., 2011] • Since  $\iint f(x,y)dxdy = 1$ ,  $\alpha$  physically means the total number of  $SO_2$  molecules observed (or  $SO_2$  burden) near the source • 23 power plant areas are studied  $\succ$  65 coal-fired plants, ~69% of the total SO<sub>2</sub> emissions



The 2014 Science Team Meeting of the Atmospheric System Research (ASR) Program Potomac, Maryland, March 10–13, 2014

SO<sub>2</sub> columns (DU)

### Good agreement between SO<sub>2</sub> emissions and OMIobserved SO<sub>2</sub> burden over power pant areas

Regions with annual  $SO_2$ emissions >50 Gg/year produce statistically significant  $\alpha$  values

Effective OMI-observed SO<sub>2</sub> dispersion time: 2.2 h



![](_page_0_Picture_61.jpeg)

| 900 |                       | <mark>⊢ 18</mark> |                   |  |
|-----|-----------------------|-------------------|-------------------|--|
| 800 | len (Mg)              | - 16              | m <sup>-3</sup> ) |  |
| 700 | ed burd               | - 14              | ion (µg           |  |
| 600 | observ                | - 12              | centrat           |  |
| 500 | $\Sigma \alpha$ , OMI | - 10              | Con               |  |
| 400 |                       | 8                 |                   |  |