Retrieving cloud properties in a fully 3D environment using scanning radar and zenith radiances

Mark D. Fielding¹ (m.d.fielding@pgr.reading.ac.uk) | Christine J. Chiu¹ | Robin J. Hogan¹ |

1. Motivation

- Boundary layer clouds are fundamental to Earth's radiation budget and remain a key source of uncertainty in climate projections.
- Observations of their 3D microphysical properties are sorely needed to improve our understanding of processes that are difficult to observe with profiling instruments, in particular for analysing cloud radiative effects.

5. Summary

- We have developed a novel method for obtaining high resolution 3D cloud fields in overcast and broken cloud conditions
- Retrieves 3D fields of LWC and effective radius and 2D fields of $N_{\rm d}$ – critical observables for studying cloud processes and aerosol indirect effects
- Evaluations against retrievals from microwave and other zenith-only based methods show good agreement

Retrieves 3D cloud effective radius and liquid water content (LWC) and 2D (constant with height) cloud droplet number

• Uses 3D radiative transfer as a forward model

Step 1 – Retrieve cloud properties inside 'supercolumns'

- Retrieves 3D cloud effective radius and liquid water content (LWC) and 2D (constant with height) cloud droplet number
- Use IEnKF to minimize:
- $(\mathbf{y} H(\mathbf{x}))^T \mathbf{R}^{-1} (\mathbf{y} H(\mathbf{x}))$
- **X** : state variables (i.e., what we retrieve) **V** : observations (i.e., reflectivity and
- **R** : observation and forward model error
- Typically require Jacobian of forward model, but not available for 3D radiative transfer
- Use ensemble of perturbed states each individually forward modelled
- Gradient in state space used to update towards minimum
- Uncertainty in retrieval calculated from Ο spread in ensemble

Step 2 – Retrieve cloud properties *outside* 'supercolumns'

• Donor – inside supercolumns • Find the best match using

†Fielding et al. (2013, JGR) 3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure

Track of radiances

Graham Feingold²

¹University of Reading ²NOAA/ESRL