

Spectro-microscopic Characterization of Physical Properties in Individual Atmospheric Particles

¹ University of the Pacific, ² Lawrence Berkeley National Laboratory, ³University of California, Irvine, ⁴ Pacific Northwest National Laboratory

Introduction

- affect their hygroscopicity, ice nucleation ability, the rate of and types of chemical reactions, etc.
- Recent work has shown that organic certain atmospheric conditions.¹⁻⁵
- Here, we investigate the viscosity/surface tension of ambient particles from five field campaigns and compare their physical the laboratory under different conditions.

R. O'Brien,^{1,2} Alexander Neu,² Scott A. Epstein,³ Amanda C. MacMillan, ³ Steve T. Kelly,² Sergey A. Nizkorodov, ³ Alexander Laskin,⁴ R. C. Moffet,¹ M. K. Gilles²

Data/Analysis

- Particles generated iwith SO_2 in the chamber.
- Slopes are relatively unchanged \rightarrow SO₂ had minimal impact on viscosity

Conclusions

soprene-HRH-SO

•STXM/NEXAFS analysis of the size and optical density provides information on the viscosity/surface tension of

 Organic dominated particles from field campaigns were identified and compared to laboratory generated

Laboratory generated particles showed lower viscosity

• Ambient particles have 11-30% inorganic components. •Neither the addition of NH_3 nor SO_2 to the lab chamber

References

1. Virtanen, A. et al. (2010), *Nature 467* (7317): 824-827 3. Cappa, C. D. and K.R. Wilson (2011), ACP 11(5):1895-1911 5. Kuwata, M. and S.T. Martin (2012), PNAS 109(43): 17354-17359