

D. Feldman¹, W. Collins¹, M. Risser¹, S. Biraud¹, D. Turner², P. Gero³, S. Xie⁴, Eli Mlawer⁵, T. Shippert⁶, D. Helmig⁷, Margaret Torn¹ 1: Lawrence Berkeley National Laboratory. 2: NOAA Severe Storms Laboratory. 3: University of Wisconsin. 4: Lawrence Livermore National Laboratory 5: Atmospheric and Environmental Research

6: Pacific Northwest National Laboratory. 7: University of Colorado-Boulder.

ABSTRACT

Here we measure clear-sky longwave surface radiative forcing from CH₄ using spectroscopic observations and ancillary data at Atmospheric Radiation Measurement Program (ARM) sites. From 2002-2007, the trend in forcing does not differ significantly from zero, but subsequently, the trend in forcing at the Southern Great Plains site is 0.26±0.05 W/m²/decade which is 30% higher than the trend from CO_2 . At the North Slope of Alaska site, the trend is 0.06 ± 0.13 $W/m^2/decade$. The difference in observed trends at the two sites is consistent with the influence of increasing oil and natural gas production only near SGP.

Background

Over the past 100 years, CH_4 has been a substantial fraction of anthropogenic radiative forcing, second only to $CO_2^{(1)}$. After a hiatus in the global increase of CH_4 mixing ratios from 1995-2006, recent studies indicate that CH_4 is once again rising⁽³⁾ and that US emissions of CH_4 may be underestimated^(4,5). Using ARM measurements, we can track CH_4 concentrations and CH_4 surface forcing $^{(6,7)}$.

CH[⊿] Measurements

Ground-based measurements of CH_{A} at BRW (near NSA) and SGP⁽⁷⁾ indicate rising atmospheric concentrations with a hiatus in the growth of atmospheric CH₄ mixing ratios from 1995-2005. They also show positive skewed distributions at SGP and more normal distributions at BRW.

Aircraft-based flask measurements of CH₄ also indicate rising concentrations since 2005⁽⁸⁾, but low correlation between the surface and free troposphere.

AERI spectral measurements are sensitive to CH_4 concentrations. Their change can be used to observe radiative forcing.

Observed differences in surface radiative forcing trends from methane

Forcing Determination

Using a combination of spectroscopic measurements and controlling for the atmospheric thermodynamic state with radiosondes, we can separate out the contribution of CH₄ to clear-sky downwelling radiance spectra and its infrared surface radiative forcing⁽⁶⁾. We difference measurements from a line-by-line radiative transfer calculation at pre-industrial CH_4 (722 ppbv) to produce residuals and derive this radiative forcing.

$CH_4 \text{ forcing} = \int_{v_1}^{v_2} ADM * (AERI_v - LBL_v (T_{sonde}, H_2O_{sonde}, PI CH_4)) dv$

Spectral measurements are sensitive to CH₄ only from 1200-1350 cm⁻¹, but effects from T, H₂O, and N₂O must be considered to determine forcing. Effects of T and H₂O can be controlled through independent measurements from radiosondes. N₂O error was estimated to be insignificant because measured profiles of N₂O indicate small variability and trends less than 0.9 ppbv/yr (0 to $5.5 \text{ km}^{(7)}$.

Radiative Forcing Trends

Surface radiative forcing from CH₄ at SGP does not differ significantly from zero before 2007. After 2007, it is 30% larger than the observed decadal trend for CO₂ surface radiative forcing.

Surface radiative forcing from CH₄ does not exhibit a change-point at NSA. A small, but not significant positive trend in CH4 forcing at NSA is detected, but the long integration times needed at NSA make change-detection challenging.

Radiation Session, Poster 123

Role of Oil and Natural Gas Emissions

Inverting measured concentrations to derive CH₄ sources is challenging. However, correlated increases in atmospheric C_2H_6 and CH_4 arise almost exclusively from anthropogenic activity⁽⁹⁾, and C_2H_6 is 10x higher at SGP than NSA. Correlations between C_2H_6 and CH_4 are high at SGP and low at NSA. Another possibility (combustion) is excluded by CO and AOD data (not shown). Recent positive trends in C_2H_6 at SGP are consistent with increasing influence of oil and natural gas emissions. Recent trends of C_2H_6 at BRW are flat.

CH₄ forcing at the surface and TOA depends both on CH₄ concentrations and on humidity. Decreasing trends in atmospheric water vapor at SGP^(10,11) are also enhancing the radiative forcing from methane.

The NSA and SGP sites have contrasting sources of CH₄. Since 2007, we find a significant forcing trend at SGP from CH_4 with a trend 30% greater than that for CO₂. The forcing trend at NSA is significantly less than SGP. Correlations between CH_4 and C_2H_6 indicate the larger trend at SGP is consistent with increased oil and natural gas extraction. Coupled with H₂O dependence, CH₄ emissions may be perturbing the surface energy balance heterogeneously.

- Myhre, G., et al. (1998) *Geophys. Res. Lett.* doi:10.1029/98GL01908. Myhre, G., et al. (2013) IPCC Fifth Assessment Report, Working Group I, Chapter 8. Nisbet, E.G., et al. (2014) Science. doi:10.1126/science.1247828. Miller, S.M., et al. (2013) Proc. Natl. Acad. Sci. doi:10.1073/pnas.1314392110. Turner, A.J., et al. (2016) Geophys. Res. Lett. doi:10.1002/2016GL067987. Feldman, D.R., et al. (2015) *Nature*. doi:10.1038/nature14240. Dlugokencky, E.J., et al. (1995) J. Geophys. Res., doi:10.1029/95JD02460.
- Xiao, Y., et al. (2008) J. Geophys. Res. doi:10.1029/2007JD009415
- 10. Gero, P. J., et al. (2011). J. Climate, doi:10.1175/2011JCLI4210.1 Jung, M., et al. (2010), Nature. doi:10.1038/nature09396

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric System Research and Atmospheric Radiation Management Programs, under contract number DE-AC02-05CH11231. The authors used resources of the National Energy Research Scientific Computing Center (NERSC) under that same award.

2016 ARM/ASR Joint User Facility PI Meeting

Discussion

References

Biraud, S.C., et al. (2013) Atmos. Meas. Tech., doi:10.5194/amt-6-751-2013.

Acknowledgements