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Introduction POLARRIS:

Polarimetric Radar Retrieval and Instrument Simulator The NASA-Unified Weather and Research Forecasting (NU-WRF) model is employed as a

cloud resolving model (CRM) for simulations of intensive observation periods (IOPs) of MC3E

Radar observations of kinematics and microphysics are critical for evaluating the
performance of cloud resolving models (CRMs). However, evaluation of model

microphysical fields remains challenging due to observational errors and a mismatch POLARRIS will be composed of CRM |0 module, T-Matrix module, Mueller-Matrix modules, and the CSU and TWP-ICE. We conducted preliminary simulations to investigate the effects of different cloud
l;guv?r%r;ngwgrlft;gp c%?;argr?rgersm%rcllgl()s?r%%%%g%ga;r?; ﬁgggisbu-:—l? rmz:sroenhd’sivc\:lse, Ciless\(/:vneblIeag HID radar algorithm module. T-matrix computes the single scattering matrix of axis-symmetric oblate microphysics and forcing data before determining base-line simulations for further sensitivity

i i P O - - i T PRYSIES, hydrometeors, while Mueller-Matrix uses the properties derived from the T-Matrix, and estimates experiments including spectral bin microphysics. The simulation results were compared with on-
methodologies for improving radar-derived kinematics and microphysics. y| i ic radar ob bl site radar measurements through Goddard Satellite Simulator Unit (G-SDSU)

polarimetric radar observables. -
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