Measuring Particle Absorption with the CAPS PMssa Monitor

T. Onasch, P. Croteau, L. Renbaum-Wolff, R. Miake-Lye, and A. Freedman
Aerodyne Research, Inc., Billerica, MA, USA
*af@aerodyne.com

SOOT CONCENTRATION MEASUREMENTS USING THE CAPS PMssa MONITOR

- Incorporates Optical Scattering and Extinction Measurements Using Same Sample Volume
- Minimizes Sampling Errors
- Absorption = Extinction/(1-SSA) where SSA = Single Scattering Albedo
- High Accuracy When SSA is Small (<0.3)
- [M] = Absorption/ MAC (MAC = Mass Absorption Coefficient)

ENGINE SOOT COMPLIANCE MONITOR (ESCOM)

- Development of a Monitor To Meet the AIR 6241 Standard for Measurement of Aircraft Engine Soot
- CAPS PMssa Provides Real-Time Measurement of Aerosol Absorption by Measuring Total Optical Extinction and Single Scattering Albedo
- Soot Mass Derived from Absorption Measurement
- Can It Meet Accuracy Specifications Under Real World Conditions?

VARIAnT2 Details (VARiable Response In Aircraft nPM Testing)

- Held August 17-31, 2015 at AEDC/ UTSI Propulsion Research Facility, Tullahoma, TN
- Probe configuration: 4 parallel probes (one to each system, one for “near source” particle sizing and mass determination, and another for smoke number measurements
- J85-GE-5 Turbojet
- Jet-A (w/AF additives) and 50/50 Camelina blend
- Mass concentrations ranging from ~5 to 110 μg m⁻³ at the instrument
- Camelina fuel blend to achieve lower mass concentrations and alter organic carbon content of PM

MEASURING AMBIENT ABSORPTION

- Biofuel Mixture Appears to Produce Less Soot per Mass Fuel Burned at All Thrust Levels
- Soot from Biofuel Mixture Exhibits Higher SSA than Soot From Jet-A Fuel

CONCLUSIONS

- CAPS PMssa Monitor Agrees with NIOSH Method 5040 for the Measurement of Soot Concentration
- Current Development:
 - Incorporation of CO₂ Monitor to Provide Real Time Soot Emission Index Information
 - Undergoing Further Testing in Variant3 Campaign National Vehicle and Fuel Emissions Laboratory (EPA)
 - Diesel Engine - SSA = 0.15 ±0.02
 - University of Tennessee Space Institute
 - Jet Engine - SSA = 0.10 (65 nm)
 - APU Engine - SSA = 0.13 (65 nm)

* In collaboration with Kostas Eleftheriadis
NCSR Demokritos, Athens, Greece