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• Previous studies (e.g., Xie et al., 2005) have 
indicated that SCM/CRM simulation errors might 
be partially attributed to the lack of spatial 
variability in the domain-mean large-scale 
forcing fields.

• The spatial variability of the large-scale forcing 
can be described in the gridded forcing data 
from a 3D constrained variational analysis 
(3DCVA) method (Tang and Zhang 2015).

• This study will use this gridded large-scale 
forcing data to investigate the benefits of 
including spatial variability and to explore its 
impacts on SCAM5 simulations of clouds and 
precipitation.

March 2000 IOP at SGP:
• Analysis domain: 5º×4.5º
• Sub columns: 0.5º×0.5º
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Observation
SCAM5

PREC LWP LWT SWT LWS SWS

SCM w/ 1D Forcing 0.174 0.107 20.6 23.1 26.3 27.7

SCM w/ 3D Forcing 0.085 0.094 16.8 19.3 25.4 28.8

RMSE of domain-mean fields for the whole 
March 2000 IOP (2-20 March). 

CLDT CLDH CLDM CLDL

SCM w/ 1D Forcing 38.4 40.7 37.1 52.4

SCM w/ 3D Forcing 32.3 33.0 29.1 44.6

• For most of variables SCAM5 with sub-column 
forcing has smaller RMSE than SCAM5 with 
domain-mean forcing.

• This RMSE difference is larger during frontal 
systems with larger spatial heterogeneity, but 
smaller in more homogeneous conditions.

• With the spatial variability of the large-scale 
forcing, SCAM5 better capture the 
characteristics of the frontal system with large 
spatial heterogeneity. 
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Methodology

1D Forcing 3D Forcing

SCAM5 settings:
• Model started every 3 hr and simulations from 

6 – 9 hr are used
• Prescribed surface turbulence fluxes
• No nudging
Experiment design:
1. SCAM5 with domain-mean forcing (1D 

Forcing)
2. SCAM5 with each sub-column of the 3D 

Forcing, and the results are averaged over 
the domain for comparison
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Time series of surface precipitation (a) and high cloud (b)
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Potential Application
• Obtain a probability distribution function (PDF) of 

the large-scale forcing based on its spatial 
variability, and implement it in SCMs to allow the 
investigation of its nonlinear response of model 
physics on the large-scale dynamics. 

• Average (interpolate) the gridded large-scale 
forcing data into different grid sizes to evaluate 
scale-aware parameterizations.

• Apply in CRM/LES to study the impact of 
spatially heterogeneous large-scale forcing.
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