Predicting Deposition Coefficients in a Bulk Adaptive Habit Microphysical Model
and Comparison to In-situ Measurements
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Introduction and Motivation

- The deposition coefficient (a) is a critical term in the prediction of atmospheric ice crystal growth. Maxwell's Growth Equation for Single Ice Particles .4
- Often a set to 1.0 and ice crystals often grown as reduced density spheres where
ice particle capacitance is equal to its radius.
- However, accurate prediction of a for each crystal facet is crucial for modeling vapor flux (here, F), and
thus nonspherical growth, of ice crystals. Adaptive Habit Size Spectrum (based on a-axis)
- Here, we capture nonspherical growth of ice crystals by modeling ice particles as oblate or prolate N, a \V 1
spheroids (Fig 1). na) = I'(v) (a )
- Single-particle framework based on the Adaptive Habit model pioneered by Chen and Lamb (1994). Total ice mass (integ?‘ating across size spectrum)
- Deposition coefficient prediction uses a bulk PSD modification of the method used by Zhang and IM I
Harrington (2014, 2015) in their Kinetically Limited Adaptive Habit (KLAH) bin model, using the radius p — dtp

2nd moment. a=0
Two nonlinear links for nonspherical evolution:

ﬁ:'r';za;rzrzjw(";gi;"m Harrington et al. (2009)and 1 ) How well does a prediction in a bulk model compare to that of a bin approach? LS —
2.) Does the adaptive habit bulk model predict realistic ice particle shapes? 2.) Gi'= Effective Diffusivity (Mass and Thermal)
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a Prediction and Model Test Framework Comparison of Predicted Aspect Ratios with In-situ Projections
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- Tests included modeling bin and bulk PSD evolution within a Lagrangian parcel model framework. reflectivity (Fig 4b) at various tIMEs. | | .
- This model conserves total water mass between the vapor and ice phases, and advects the PSD vertically within an - Old ISHMAEL scheme reduces ice number concentrations during )
environment that changes with height (with the vertical velocity profile depicted in Fig. 2c. aggregation but new ISHMAEL scheme includes aggregate category. .
- Bulk instantaneous growth calculations are virtually indistinguishable from Zhang and Harrington's KLAH bin framework. - 2D-C optical array probe (OAP) images fit with ellipses following ”_5“ &
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- Gi' Is identical (Fig. 2a), and a prediction for each axis is very close, with bulk slightly overpredicting bin (Fig. 2b). approach by Welzl 1991. - &
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e Random orientations of spheroids act to shift projected aspect ratios toward unity.
e Particle shape changes using the adaptive habit model for these ideal model runs do not reach the lowest
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