Modeling the Explicit Chemistry of Organic Aerosols:
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A Library of Precursors and Their Products Figure 4: Evolution from dodecane, by element
This new project will use observational data from three DOE-led field Both gas and particle-phase properties will be inventoried. For each precursor,
campaigns (GoAmazon [1], BBOP [2], and HI-SCALE [3]) to evaluate and we can compute e
improve our hyper-explicit chemical model GECKO-A (the Generator of - the explicit molecular identity of major (e.g. top ten) oxidation products in _ égﬂlégiﬁ? crazionio
Chemistry and Kinetics of Organics in the Atmosphere [4]), and specifically to both phases, and the average molecular mass in the particle phase 8 to04 Jc12-a00aio o100
evaluate its ability to predict the amounts and properties of organic aerosols - atomic ratios (O/C, N/C, H/C, van Krevelen diagrams) summed over any g B o oo
(OA). Each campaign offers specific challenges and opportunities to evaluate subset of species (e.g. condensed or gas phase) : Euﬂzﬁaﬁt EIHHEN
and improve GECKO-A: GoAmazon sampled at the interface of regions - functional group statistics (the number of ketones, aldehydes, di-carbonyls, SiEESCn
dominated by biogenic or anthropogenic hydrocarbons, providing a contrast nitrates, peroxides, acids, alcohols, etc., divided by the number of carbons) |
between chemical regimes that should be within the current predictive for the particle phase 0 S S ) S S s s
capability of GECKO-A. BBOP provides an opportunity to test and improve the - spectral absorption cross sections in the gas phase and mass absorption e
chemistry of light-absorbing compounds, important to radiative forcing coefficients and indices of refraction for the particle phase Figure 5: Evolution from dodecane, by functional groups
(brown carbon) and OA lifetimes (photolysis), with updates based on our - volatility spectra of the gas-particle ensemble (mass as function of vapor
Tropospheric Ultraviolet Visible model. HI-SCALE provides simultaneous pressure), and volatility averaged over the particle distribution
measurements of organic molecules in air, aerosols, and cloud droplet - correlations between volatility and solubility (Henry’s law constant) for the
residuals, and will be used to test our extension of GECKO-A to cloud oxidation products. B co
chemistry. We anticipate that this will elucidate the formation of carboxylic The library will be made available online to the research community. E
acids, which observations show to be ubiquitous but are not fully explained;
and the formation of QA partlclgs when cloud droplets ev.aporate,.whlch Example: n-dodecane (“'C1szs)r Continental
some (but not all) previous studies have suggested as major contributors to
the global burden of organic aerosols. Successful improvements will be The GECKO-A model computes the identity and amounts of all molecules g s e e | e s s
parameterized for implementation in a three-dimensional regional chemistry- plausibly derived from a precursor VOC. This large output can be “sliced and Ve
transport model WRF-Chem and will be made available to the community. diced” to synthesize important gas and particle properties, including Figure 6: Evolution from dodecane, by polyfunctional molecules
measurable quantities (e.g. O/C ratios). Below are some of the products that

can be made available for each precursor, and each environmental scenario.
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We plan explicit chemistry simulations of the GoAmazon field campaign for: dodecane precursor and its =0\ 8 4004
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(i) pristine conditions dominated by biogenic VOCs, product organic vapors ¢ f\ A - = ;
1 ] ] ] E; :S::cursor E}
(ii) polluted urban plumes from Manaus, and and particles, and inorganic ¢ /\ £
. . . gases - \ = 2e-04
(iii) mixed situations. ' - VAR
Precursor VOCs include dozens of biogenic and anthropogenic hydrocarbons, X — ~ |
each having distinct chemical degradation pathways leading to products , o ° == — e . e -
, , , , , ) Evolution of the distribution of vapor pressures, C*(t) | | | | |
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preparation for these complex simulations, we are using the GECKO-A model T vl L t~3 ¢ Figure 2: Vapor pressure
to develop an on-line data base, or “library”, for many common individual 2T I of dodecane oxidation Community Input
. - Phase .
hydrocarbon precursors to SOA formation, under a small number of standard | £ me products, and their
representative environmental conditions (see Table 1): ;s ** phase in the presence The library will be made available online to the research community. To
. o ollted § of 10 ug m3 seed, at two maximize its usefulness, we invite suggestions that enhance our
TABLE 1: Scenarios | | N 2 00 l , different times selection of precursors, environmental conditions, molecular-level
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(Aumont ‘_*ta' 2016)(5] i o deifh) itk 1009 o0z 105 etz chemical markers, as well as estimated bulk thermodynamic and optical
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