Anomaly Detection for ARM Radiometers using Machine Learning Algorithms

- Random forest regression model implemented
- Builds an ensemble of decision trees using a random sampling of a subset of both the training set and features
- Each decision tree is grown to minimize the residual sum of squares
- Final answer is the average of all decision trees

More Information:

http://aeronet.gsfc.nasa.gov/ ARM eXternal Data Center (XDC): http://www.xdc.arm.gov/, xdc_oper@arm.gov.

ARM Google: http://google.arm.gov/ search for "Cimel OR CSPHOT OR CSPOT"

References:

Adams, B., L. Gregory, R. Wagener, "Automatically detecting typical failure signatures in Cimel Sun-photometer data to improve data quality", Poster presented at New York Scientific Data Summit, NYU, New York, August 2-5, 2015 Alexandrov, M.D, et al, "Optical depth measurements by shadow-band radiometers and their uncertainties", M.D. Alexandrov et al., APPLIED OPTICS Vol. 46, No. 33 20 November 2007 Machine Learning workflow images: http://www.datascienceassn.org/content/machine-learning-workflow. Instrument images: www.arm.gov Applications images: www.arm.gov and www.gettyimages.com Random Forest Image: https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/

- days with false positives.

Measurements Using Machine Learning"

Acknowledgments

We would like to thank Yelena Belyvania for her help with graphics. We would also like to thank Connor Flynn for his help with the MFRSR data algorithms.

