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Machine Learning Step 1: Identify Patterns Step 2: ldentify Features

Machine Learning

Machine learning is a data-based process. It works with data, often in multiple dimensions, to discover patterns that can be used to . . . . . - .

analyze data and make predictions. The use of machine learning applications has exploded over the past several years and is used Step 1 » Ide ntlfy patte ns In the data . DEflne patterns in the data in mathematlcal terms
in applications such as Movie/Purchase Recommendation Engines (Netflix, Amazon), Self-driving cars (Google, Uber), Financial
Market Prediction and Natural Language Processing (Siri). Here we explore the use of machine learning for ARM instrument data
quality applications.

Example: Identify features that describe the cosine curve in

Here we looked for patterns indicating potential problems the data (indication an obstruction).

ARM Applications . . - _— ,
We examine the use of machine learning to aid ARM instrument mentors, whose main responsibilities are to ensure their Wlth the I nStru me nt' We tra 11 th e mOdeI to d IStI ngu ISh
instruments are producing high quality data. These include diagnosing and fixing instrument problems, checking data quality for . . . . . . . .
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. Normal Operation where t is the fraction of the day (midnight = 0.0, noon = 0.5)
» Discover trends
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Other ARM applications for

Step 3: Train and Run Model Results Applications/Future Work Machine Learning

Model Results .
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. = Model incorporates many features of instrument key 1 I
= Random forest regression model : o T
. measurements simultaneously R Scientists .
imp lemented . . . Identify and Fix Instrument Problems Ur?g‘;‘;‘tggf‘y'ygjém;;gi'ﬁén -
« Builds an ensemble of decision trees . Trained” for periods when instrument operated normally — e | S O L —|
using 4 random sampllng of a subset Deviations against training fit indicate anomalies 1 = > Currently testing use of machine learning on MFRSR
of both the training set and features = * Validated using existing Data Quality Reports . emrs. o ERL L
e = Model is written in an Open Source Python Framework and used by mentors s+ © ST eSS, € P
= Each decision tree is grown to - Faster, more sensitive than human eyes, and automated for Data Quality inspection fﬁ:r;s;chr)ir;;;c;r(;nngIi:SFa'Ei)gvr\]/?nselrr]T;pplf(;EIe::d to monitor
minimize the residual sum of squares * One two-year run took Only 30 seconds i : : : . : > The FFT was known to detect the shadowband We are exploring the use of combining image data
P g g g
. . _ . . " Feature matrix is used by scientists for Uncertainty Quantification development problem (Alexandrov, 2007) from a camera with multiple AOS instruments.
= Final answer is the average of all = Currently testing model in operational mode , | , > This is the first time that the FFT has been automated.  check out and see our poster for more details:
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