Here, we explore analytic DSDs, those produced by a state-of-the-art bin model, and DSDs from ARM disdrometer observations.

Analytic DSDs
- Use the gamma DSD: \(N(D) = N_0 D^p \exp(-\frac{\epsilon D}{\Lambda}) \)
- Compute self-consistent \((M_k, M_j)\) pairs for \(k, j = 0, 20 \). From each \((M_k, M_j)\), two DSD parameters \((N_0, \Lambda)\) are obtained for a wide range of \(\epsilon \) similar to what has been observed.
- Compute \(Z_{\text{H}}, Z_{\text{DP}}, \) and \(K_{\text{DP}} \) from these DSDs using the T-matrix method (Fig. 1).

ARM Disdrometer Data
- **PARSIVEL-2** and 2D video disdrometer data from ARM sites around the world are used.

Combined Data: Results

- 20.7 million “realistic” DSDs; moments and dual-pole variables computed for each (Fig. 3).

Bin Model Simulation Data
- 1D bin microphysical model of Prat and Barros (2007, JAMC) used. Simulations run for 60 minutes (output \(\Delta t = 1 \) min) in a 3-km-tall domain (\(\Delta z = 10 \) m). Normalized gamma DSDs initialized at domain top with the following parameter ranges:
 - \(\Delta z = 0.2 \) mm to 4 mm
 - \(N_0 = 100 \) to 80000 mm\(^{-1}\) m\(^{-3}\)
 - \(\epsilon = 1 \) to 10
 - \(\Lambda = 0.01 \) mm\(^2\) hr\(^{-1}\) < \(R < 500 \) mm\(^2\) hr\(^{-1}\), resulting in 10742 simulations.
 - DSDs are taken at every output time and height, resulting approximately 199 million DSDs.

Introduction
- We are developing a novel warm-rain microphysics scheme (BOSS, P. Poster 119).
- BOSS uses Bayesian inference for robust parameter uncertainty estimation, which facilitates constraint by observations.
- Dual-polarization radar observations will provide a probabilistic constraint on scheme structure and microphysical sensitivities to environmental conditions.
- BOSS can use any combination of prognostic drop size distribution (DSD) moments. Unlike most schemes, however, it does not specify a DSD functional form.

This necessitates development of a moment-based polarimetric radar forward operator.

The \(k \)-th DSD moment (\(M_k \))

\[
M_k = \int_{D_{min}}^{D_{max}} N(D)D^k dD
\]

\(D_{min}, D_{max} \) minimum, maximum drop sizes
\(N(D) D^k \) number density of drops with diameters \(D \) to \(D + dD \).

Choice of prognostic moments will be partly based on the resultant uncertainty in our forward operator.

A given value of \(M_k \) can arise from an infinite number of DSDs. Our goal is to assess variability in the subset of realistic DSDs.

Here, we explore analytic DSDs, those produced by a state-of-the-art bin model, and DSDs from ARM disdrometer observations.

Define a combined variability parameter:

\[
T = \delta M + \delta \epsilon M_0 + \delta \epsilon M_1
\]

\(\delta \epsilon \) expected observation uncertainty
\(\epsilon \) standard deviation of drop variables for a given set of moments \((M_k, M_j)\) arising from DSD variability

Thus, the look-up table will include not only the mean values of \(Z_{\text{H}}, Z_{\text{DP}}, \) and \(K_{\text{DP}} \) in each bin, but also the de-trended standard deviation of \(Z_{\text{H}}, Z_{\text{DP}}, \) and \(K_{\text{DP}} \) within a bin, as well as the distribution skews, and covariances between the polarimetric radar variables.

For the 2-moment BOSS, we desire the pair of predicted moments \((M_k, M_j)\) that minimizes uncertainty in the forward operator (i.e., for which pair of moments do the dual-polarization radar variables provide the most information?)

Compute the distribution-weighted standard deviation for each radar variable \(X \):

\[
\xi = \sum_{i=1}^{N} \sigma_i [M_k(i), M_j(i)] \times P[M_k(i), M_j(i)]
\]

where \(P \) is the joint pdf of \(M_k \) and \(M_j \) which are discretized into M and N bins, respectively. Results for all \((k, j)\) pairs considered are shown in Fig. 4.

Formulate the forward operator for a number of different moment pairs (for 2-moment BOSS) or triads (for 3-moment BOSS). This will be in the form of a look-up table. Fig. 5 shows an example of what this looks like for \((M_0, M_1)\).

Figures
- Fig. 1: Vertical standard deviations of \(Z_{\text{H}}, Z_{\text{DP}}, \) and \(K_{\text{DP}} \)羽 winter from ARM data as a function of \(\epsilon \). Note the different color scales used in each panel. (a) shows the standard deviation of \(Z_{\text{H}} \) corresponding to enrolled points in top left panel. The blue-dashed line is for moment pair \((k, j)\), otherwise the gray-dashed line is for moment pair \((12, 3)\).

Development of a Polarimetric Radar Forward Operator for the Bayesian Observationally- Constrained Statistical-physical Scheme (BOSS)

Matthew R. Kumjian1, Charlotte Martinkus1, Olivier Prat2, Marcus van Lier-Walqui3, Hughbert C. Morrison4, and Scott Collis5

1. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA
2. North Carolina Institute for Climate Studies, North Carolina State University, Asheville, NC
4. National Center for Atmospheric Research, Boulder, CO
5. Argonne National Laboratory, Chicago, IL

Funding for this research comes from the U.S. Department of Energy Atmospheric System Research (ASR) Program, award DE-SC0016579.