Aerosol Impacts on Mid-Latitude MCS Precipitation Intensity and Radiative Forcing

Stephan M. Saleeby1, Susan C. van den Heever1, Peter J. Marinescu1, Sonia M. Kreidenweis1, Paul J. DeMott1, Colorado State University, Ft. Collins, Colorado

1. Introduction

An increase in the number concentration of cloud droplet nucleating aerosols has the potential to modify cloud droplet size distributions in deep convection. Such modifications can impact the rates of key microphysical processes that influence the size distributions of precipitating hydrometeors and the cloud system evolution. (Storer and van den Heever 2013; Seigel et al. 2013; Saleeby et al. 2016).

Modification of the hydrometeor size distributions and the rates of microphysical processes in deep convection can impact the vertical distribution of condensate, and thus the precipitation rates, cloud top radiative properties, and the net radiative flux of such cloud systems.

The impacts of VARIABILITY in AEROSOL CONCENTRATION on the PRECIPITATION INTENSITY and NET RADIATIVE FLUX in deep convection is explored through the use of high-resolution cloud resolving model simulations of mesoscale convective systems (MCSs) that occurred 20 May and 23-24 May, 2011 over the U.S. central plains during the MC3E field project.

2. Numerical Modeling Simulations

CSU RAMS model: Run with 2-moment microphysics and aerosol modules. (Saleeby and van den Heever 2013).

Model domain: Nested 3-grid setup with horizontal grid spacings of 30, 6, and 1.2km. Results analyzed on inner domain.


Aerosols: Initialized aerosol field with horizontally homogeneously exponentially decreasing profiles with maximum surface concentrations guided by observations from MC3E. Aerosol fields evolve over time via advection, diffusion, and scavenging. The radiative effects of aerosols are not included in this study.

3. Cloud Droplet Characteristics

Cloud Water

Droplet Number

Droplet Size

An increase in aerosol number concentration leads to more numerous but smaller cloud droplets.

There are mixed trends in cloud water mixing ratio, with an increase at lower altitudes and decrease at higher altitudes.

4. Riming Removal Process

May 20

May 23-24

More riming

In more polluted conditions, ice particles more readily collect the more numerous cloud droplet population. The cloud droplet size reduction is not substantial enough to highly suppress collisions between ice and the far more numerous cloud droplets.

5. Vertical Transport of Condensate

Greater efficiency of riming scavenging of cloud water leads to reduced transport of condensate to the upper anvil levels.

Meanwhile there are more numerous smaller crystals that tend to have longer residence times at high altitude due to slower fall speeds.

6. Cloud Ice Characteristics

Cloud ice mixing ratio decreases at the uppermost levels due to increased riming and subsequently reduced vertical transport of cloud droplets to the homogeneous freezing level.

The more numerous, smaller ice crystals reside at a higher altitude for longer periods of time due to slower fall speeds, thus reducing the emission temperature of outgoing longwave radiation and retaining more heat below cloud top.

7. Precipitation Distribution

8. Cloud Top Albedo

9. TOA-OLR

10. Net Radiative Flux

Aerosol loading leads to an increase in riming rate and precipitation rate in MCSs: Greater riming leads to less cloud water lofted to the upper and rearward portions of the MCS, and it also increases growth of precipitating hydrometeors. This leads to a decrease in the frequency of stratiform and weaker convective precipitation and a subsequent increase in the frequency of heavy convective precipitation.

Aerosols indirectly induce a net warming (reduced cooling) effect in MCSs: Cirrus anvil ice spectra shift towards more numerous, smaller ice crystals. In spite of less anvil ice mass, this produces anvil cloud with longer residence time at higher altitude, greater cloud top albedo, reduced top of the atmosphere outgoing longwave radiation, and a reduction in the net radiative flux to space by up to 13%.

11. Summary

Acknowledgements: This work was supported by the DOE (Award # DE-SC0010569).

References