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• 13 L Potential Aerosol Mass (PAM) oxidation flow reactor 
(Kang et al., 2007; 2011; Lambe et al., 2011,; 2012; Li et 
al., 2013; 2015; Ortega et al., 2013; 2015; Palm et al., 
2016, 2017; Peng et al., 2015; 2016; 2017)

• Larger range of oxidant exposures than chambers with 
reduced wall effects

• Oxidant concentrations in the reactor are elevated in 
one of several ways:

OFR185:  O2 + hv (185nm) O3
O3 + hv (254nm) + H2O  2 OH
H2O + hv (185nm) OH

OFR254: Inject O3 + hv (254nm) + H2O  2 OH
O3 OFR: Inject O3

• Aerosols and gases formed in the reactor are analyzed 
w/  HR-ToF-AMS, SMPS, and PTR-TOF-MS, CCN, etc. 

• Photochemically-processed aerosols show SOA 
formation, oxidation, hygroscopicity, and cloud 
activation similar to the atmosphere (e.g., Kang et al., 
2011; Lambe et al., 2011) 

• A model has been developed and verified to correct for 
losses of condensable gases in the OFR (Palm et al. 2016)

Motivation: SOA Sources, Aging, and Lifetime
• Secondary Organic Aerosols (SOA) have significant effects on 

climate, air quality, and human health, but its sources, formation 
and aging in the atmosphere is poorly understood

• Chamber studies:
o Cannot study ambient air in near real-time
o Have difficulty producing OA as oxidized as in the atmosphere 

• A new method is used to study OA formation and aging in real-time 
 oxidation flow reactor
o Allows studying real-time variations of SOA-forming potential 

in the field

Conclusions
• OFR approx. reproduces and extends atmospheric oxidation 
• Yields: standard addition to ambient are similar to chambers
• SOA formation correlates with ambient VOC concentrations
• Oxidation of ambient air produces x2-10 more SOA than 

predicted from traditional VOC precursors, suggesting another 
source such as unmeasured oxidation products of VOCs

• Multilinear regression suggests that partially oxidized biogenic 
gases were the largest contributors during both seasons

• Biomass burning precursors more important in the dry season

Method: Oxidation Flow Reactor

• Manaus is a city of 2 million people 
surrounded by forest

• T2 site is across the Rio Negro from 
Manaus; T3 site is ~70km downwind

• Wall loss timescale (no aerosol) measured at ~1000 s 
(consistent with Ziemann, Donahue results; Krechmer et 
al., 2016)

• Can directly measure the strong gas loss timescale 
dependence on aerosol surface area

Timescales (τGWP)

• Equilibrium time scales for each gas-phase compound at 
different seed aerosol condensational sink values

• Combined gas loss timescales consistent with model predictions
• α ~ 1 for the lowest volatility compounds
• α < 1 for more volatile specise
• Compounds are colored according to SIMPOL-estimated c*

• This has been a remarkably difficult parameter to quantify, 
with some literature studies proposing or using α = 0.001

• Average for all compounds α ~ 0.6 
• On the same range as values measured in several previous 

studies of liquid droplets or aerosols 
• Points from are averages for each compound across multiple 

experiments 
• Error bars are standard error of the mean

Measurement of α, the mass accommodation coefficient

Experimental Method
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Conclusions
• Quantification of fundamental SOA formation processes in a 

Teflon chamber is possible using fast-product-burst method
• Simple chemical system rapidly produces low-volatility gas 

products taken up by liquid OA seed and chamber walls
• Clear differences in kinetics vs. OA seed amounts allow us to 

separate and quantify the influence of wall and particle uptake
• We reproduce gas- and aerosol-phases w/ kinetic box model 
• Aerosol mass accommodation coefficient (α): average ~0.6, 

near 1 for low-volatility species, decreases as c* increases
• The experimentally-constrained model framework can be used 

to derive a correction factor (Φ~1-4 ) for SOA mass yields due 
to vapor losses to walls as a function of species properties.

• Experiments underway or planned for solid and viscous seeds
• Model suggests no difference in yields between batch and 

continuous-flow chambers• SOA formation after approx. 3 days of OH aging follows 
the availability of biogenic precursor gases

• Substantially higher SOA potential at night

Case Study: Covariance of SOA Formation with Ambient VOCs

IOP1 Wet Season IOP2 Dry Season

SOA Formed from Ambient Air Compared to Amount 
Predicted from VOCs in GoAmazon

Motivation: GPP laboratory experiments
• Gas-particle partitioning (GPP) is a process that describes gas-

phase species uptake into particles depending on equilibrium
• Most aerosol models use gas-particle equilibrium partitioning 

theory as default treatment of gas-aerosol transfer, despite 
questions about its validity and applicability

• Remaining questions about how gas-phase wall losses affect 
SOA yields

How well does the model constrain α and c*?

Condensable Gases Partitioning vs. Seed Surface Area

• Kinetic box model is used to fit α (dependent on rate of initial 
decay: kinetics) and c* (dependent on ending equilibrium 
concentration: thermodynamics)

• Low volatility compounds (right panel above) have very well 
constrained α

• Higher volatility compounds (left panel above) have α < 1, but 
harder to quantify at < 0.1 from single experiments

• Combining results of multiple experiments reduces uncertainty
• Results are robust against uncertainties on Cwall

Measuring SOA yields in an OFR

Model set-up

Wall-loss SOA yield correction model

• Matrix providing an aerosol mass yield correction factor (φ) for 
SOA formation from single condensable gas w/ given c* and CS

• Factors for each VBS bin can be derived and applied
• Assumes that SVOC production is rapid
• Does not account for oligomerization, or heterogeneous 

particle-phase chemistry (but it can be used as a component of 
a more complex model that includes those processes)

• Several VOCs injected into the OFR under ambient conditions
SOA yields were consistent with published chamber yields

• Measured decay of ambient VOCs and injected CO verifies 
that modeled OH exposure is accurate within approx. a 
factor of 2-3 (consistent w/ Li et al. 2010, Peng et al. 2015)

• SOA from OH oxidation often >> than predicted from measured ambient precursors 
• Consistent with previous OH oxidation measurements (Palm et al. 2016) 
• Suggests that SOA is dominated by unmeasured primary and/or secondary S/IVOCs. 

The most likely explanation are S/IVOCs formed from O3 or NO3 oxidation of VOCs at 
night. The GECKO-A model will be used to evaluate this possibility.

• SOA from O3 oxidation is consistent with amount predicted from ambient VOCs
• Suggests that ambient S/IVOCs are reactive towards OH but not O3 (no C=C left). 
• Consistent with similar O3 oxidation experiments in Colorado forest (Palm et al. 2017)

Estimating Source Contributions to Ambient SOA-forming Gases 
(VOCs+S/IVOCs) Using Multilinear Regression Analysis – Preliminary Results
• Multilinear regression of SOA formation in OFR vs. tracers for anthropogenic (NOy), 

biogenic (MT+SQT+isoprene, run as multiple separate tracers), and biomass burning 
(vanillin + vanillic acid + syringol + guaiacol) source types

• Biogenics is the largest contributor, with anthropogenic similar on both seasons.
• BB gases are more important in dry season, as expected

• Stability of results is consistent with consistent levels of precursors in both seasons
• Modest increase in SOA Potential between the seasons is consistent with modest 

impact of biomass burning on SOA (e.g. Cubison et al., 2011)


