The Role of Localized Circulations in Driving Spatial
Variability in Deep Tropical Convection
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Introduction Diurnal Cycle Characteristics in Different Tropical Regions for March-April-May

As observed at the tropical ARM sites, thermally-driven circulations AMmazon | ake Victoria Maritime Continent
(e.qg., sea breezes, river breezes, and mountain-valley breezes) can
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We derived regional regression relationships using only the slope of the terrain (a proxy for orographic lifting and mountain-valley breezes) and distance
to water (a proxy for land-water breezes) at each point as predictors of the seasonal mean rainrate or diurnal cycle amplitude:
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Datasets Our overly-simplistic statistical model reproduces many features of the spatial variability, particularly around the Maritime Continent and the Amazon river.
* Now: Precipitation from TRMM 3B42 dataset (0.25°, 3 hr, 17 yrs) Moving forward we want to (1) explore adding additional variables to the model such as wind speed orthogonal to terrain, (2) compare and contrast the

* Future: IR data from NASA merged-IR dataset (4 km, 30 min, 16+ yrs) regional statistical models with a global model, and (3) examine the strength of these relationships in ACME as a metric of model performance.
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