Alaskan clouds in a pan-Arctic context **Synthesizing Knowledge from Ground-based Observations**

Matthew Shupe, Ola Persson, Amy Solomon **Cooperative Institute for Research in Environmental Science** University of Colorado and NOAA DE-SC0011918

Question: How consistent are cloud processes across the Arctic?

Method

2) Phase Occurrence

Key Results

Barrow, Oliktok, SHEBA are similar due to proximity and meteorological similarity (some data limitations for Oliktok). Liquid occurs 50-60% of time

- Liquid occurs >20% of time below 1 km
- Liquid-only clouds occur, in part due to temperatures > 0C

Eureka is somewhat colder and Summit is the coldest (and both are relatively dry), causing significant differences in phase occurrence.

- Liquid occurs 30-35% of the time Liquid occurs <10% of time below 1 km</p>
- Few liquid-only clouds occur

Similar occurrence fractions for different cloud types as a function of temperature at all sites, when taking the range of temperatures into consideration.

Conclusion

General pan-Arctic consistency in cloud phase occurrence; differences are primarily driven by differences in meteorology (primarily temperature).

Annual cycle of cloud liquid water path statistics from MWR.

1) Observations & Observatories

4) Liquid Cloud Radiative Effects (CRE)

water (LWP > 5 g/m2) and those that do not, multiplied by the fractional occurrence of liquid-containing clouds.

Eureka not included due to lack of upwelling radiation.

Key Results

- CRE LW annual variability is largely driven by the annua variability in LWP at a given site, modulated by BL structure (i.e., temperature gradient)
- CRE_SW annual variability is driven by the solar and albedo cycles.
- CRE Net shows warming year round at all sites except for those sites where surface albedo decreases below ~0.6.

5) Explaining CRF with a simple model

Contours show LWP at which CRE transitions from a surface warming to cooling effect, as a function of sun angle and surface albedo. Based on a simple model for cloud radiative forcing where cloud optical depth is parameterized based on LWP only (Shupe and Intrieri 2004). Different sites occupy different portions of the phase space.

General: For low surface albedo (most of the Earth) clouds cool the surface at day and warm the surface at night.

Over land: Snow largely determines the sign of cloud radiative effect. Snow present = Surface warming Snow absent = Surface cooling

Over sea ice: Bare ice decreases albedo enough to support a surface cloud cooling effect, but only for the highest sun angles

Over an ice sheet: Cloud warming of the surface occurs under almost all conditions because surface albedo is consistently high. Cooling only occurs with highest LWP in midsummer.

Conclusion

Pan-Arctic cloud radiative effects vary substantially across the Arctic but appear to follow a relatively simple model based on sun angle, surface albedo, and cloud liquid water path

Five observatories across the Arctic have a consistent set of ground-based cloud instruments.

Data Sources

Cloud Phase – Radar, lidar, MWR, radiosonde (Shupe 2007) Liquid Water Path – MWR (Turner et al. 2007) Ice Water Path – Radar (Shupe et al. 2005) **Thermodynamics** – Radiosonde **Cloud Radiative Effect** – Broadband radiation

Note: Oliktok Point observations are adversely impacted by low-level radar artifacts; these lead to some false cloud identification.

CRE from liquid-containing clouds for LW radiation (top), SW radiation (middle), and net radiation (bottom) for four different atmospheric observatories

albedo at 4 different sites. The curve for LWP=30 g/m2 (typical average LWP) from the plot to the left is included in each panel.