Evaluation and improvement of a diagnostic

’-‘
—¥ cloud fraction scheme using ARM data

Kwinten Van Weverberg, Cyril J. Morcrette

MEt Ofﬁ Ce Atmospheric Processes and Parametrizations,

Met Office, Exeter, UK

Motivation | New CFS with multimodal moisture-temperature PDF
* Cloud fraction schemes (CFS) are used in GCMs to account for

. C . .. . . Current diagnostic scheme (Smith 1990) in the MetUM, used in LAM configurations, IS
subgrid variability (important for radiation and microphysics). : ( ) J

based on a symmetric joint moisture-temperature PDF G(s). Cloud fraction and water

* It IS not known up to what resolution they are beneficial. content are calculated by integrating over the PDF as follows:
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; Y Cloud fraction properties for C= -0 G(S)dS .= _L__Q (Qc +S)G(S)d8 (Q. = grid-mean super-saturation)

: ‘ : convection-permitting _ C _ T o _ o _ _
simulations at 4 and 1 km grid In Smith, PDF variance _(02) IS f|>_<ed profl_le_, in Smith-BL, o7 is linked to TKE diagnostic
spacing with three different from BL scheme via critical relative humidity (Van Weverberg, Boutle et al. 2016 ).
CFS and without a CFS for Even if 02 scales with resolution, no convergence to all-or-nothing with symmetric PDF.
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Smith-BL Only non-precipitating and non-mixed phase cloud ( ) Assume O, cause Y penetl’athnS OT all Torm layers
— o Observations are from ARSCL/Microbase-KA VAP above and below, as observed near PBL top*. Require that:
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2l 11 where uy is mean of joint moisture-temperature PDF, 0,2 is variance
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Improved LWC, AVG and FOO of Smith-BL-New compared No CFS appears better in this case, but Smith-BL-New Smith-BL-New appears to outperform other CFS in terms of
: : : : leads to larger AWP compared to other CFS :
to Smith-BL. No CFS underestimates cloud in this case. AVG cloud fraction and AWP

Conclusions
 Even at 1 km grid spacing, a sub-grid cloud scheme is beneficial, but current schemes struggle to converge to all-or-nothing behaviour.

* New diagnostic scheme combines PDFs from other layers, assuming variance caused by undulating PBL top. Can get to fuller cloud cover in large
variance and implicitly simulates skewness near PBL top, similar to observations. Also proposed new way of calculating ice cloud cover.

*This is work in progress: Methodology will be further fine-tuned (e.g. making number of layers function of turbulent length scale), new simulations
for full MC3E period and cases of stable stratocumulus over the North Sea in the UK under way.
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