Characterization of ice nucleating particles during continuous springtime measurements in **Prudhoe Bay: an Arctic oilfield location**

Jessie Creamean^{1,2}, Rachel Kirpes³, Kerri Pratt³, Nicholas Spada⁴, Gijs de Boer^{1,2}, Maximilian Maahn^{1,2}, Russell Schnell² ¹University of Colorado, Boulder, CO; ²National Oceanic and Atmospheric Administration, Boulder, CO; ³University of Michigan, Ann Arbor, MI; ⁴University of California, Davis, CA

Background & motivation

- frozen surfaces.
- significant hindrance to simulating Arctic mixed-phase cloud processes.
- microphysics.

INPOP: Ice Nucleating Particles at Oliktok Point

- an oilfield¹
- Dates: 1 Mar 31 May 2017
- Sample collection: 3 DRUMs (3 to 8 size bins from 0.09 >12 µm)
- Time resolution: 12 24 hours
- Data produced: INP spectra, single-particle & bulk chemistry

Influenced polluted, appeared to be new particle formation. Clean conditions = more sea salt, fly ash, dust, while polluted = more organic aerosol. N/E winds and chlorine elevated and calcium, then S/W winds.

ARM ASR Atmospheric System Research