Why does deep convection have different sensitivities to temperature perturbat
In the lower and upper troposphere?

Introduction

Motivation

Previous studies have documented that deep convection responds
more strongly to above-the-cloud-base temperature perturbations

in the lower troposphere than to those in the upper troposphere
(Tulich and Mapes 2010, Kuang 2010 ).
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Implications

* Results 1n a “shallower” convective quasi-equilibrium rather
than a full tropospheric quasi-equilibrium

* A stronger lower/middle troposphere convective response leads

to wave potential energy generation and wave growth

A mechanistic understanding of what contributes to different
sensitivities can help model convectively coupled waves better

Yang Tian and Zhiming Kuang
Harvard University, Earth & Planetary Science, Cambridge, MA

Model setup

Hypotheses

- Liquid water content 1s limited in the upper troposphere, so 1s
evaporative cooling

- Near-neutral buoyancy in the lower troposphere

- Vertical velocity 1nertia, velocity increases with height
Model Configurations

- RCE: Radiative Convective Equilibrium

«  SAM: 500m horizontal resolution (128 x 128 km), 10s
temporal resolution (2 hours)

- Introduce temperature perturbations at 700 hPa (lower tropo)
and 300 hPa (upper tropo): +0.25 K Gaussian-shaped
temperature perturbation with 75mb half width

- 100 ensemble runs, each has 8 particle per grid box(~30
million Lagrangian particles)
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Test Hypothesis 1: The amount of liquid water content

response in buoyancy field
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Peak buoyancy reduction between 700 hPa(-0.0027) and 300
hPa(-0.0026) 1s similar, whereas the difference in response 1s
more than 3 times, condensed water content should not be a
controlling factor

Results

Test Hypothesis 2 & 3: Relative importance between vertical
velocity and buoyancy acceleration through “swapping™

Lagrangian representation of updraft mass flux: counting the
number of cloudy parcels that cross a particular interface within a
certain time interval.
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Selected two levels instead of a single interface, mass flux 1s
calculated over the entire perturbation.

Upper level: 3000 m (700 hPa); 9400 m (300 hPa)
Lower level: 1400 m (700 hPa); 7300 m (300 hPa)

From here we can calculate the percentage of particles that can
successfully cross the perturbation layer, defined as crossing
percentage.
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Weaker dependence on initial buoyancy in the lower

troposphere

Sub-grid scale diffusion term 1s small in the height range we
consider, we can accurately compute how a parcel’s vertical
velocity and position evolve using buoyancy and vertical pressure
gradient accelerations.
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To quantify the effect of the initial vertical velocity, we can, for
example, solve Egs. (1-3) for the 700 hPa case, but with the 1nitial
vertical velocity from the 300 hPa case. This 1s done through non-
linear mapping:
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Before swapping:
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After swapping (lower troposphere):

replacing buoyancy replacing vertical velocity
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Conclusions

* Total water content difference plays a secondary role

* Both vertical velocity and buoyancy play important roles in
determining the different convective sensitivity, but velocity is a
bit more important than the buoyancy

* Vertical velocity should be included for parameterization to
account for correct convective sensitivity
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