

Cloud Size Distributions from many different Large Eddy Simulations of Shallow Cumulus Convection

Nicholas Barron, Thijs Heus, Dorothy Pharis, Shawn Ryan t.heus@csuohio.edu - Cleveland State University

- A good understanding of size-dependent behavior of clouds is necessary for modern scale-aware parameterizations (e.g., ED(MF)ⁿ)
- **Research question 1**: Does the cloud size behave according to a specific distribution (e.g., powerlaw)
- And if so: Is this distribution generic across cases?
- **Research question 2**: How can we reconcile observed chord length distributions with cloud area distributions necessary for

parameterizations?

Take Home Messages

- Cloud Size Distributions from many different LES simulations were calculated
- Double Power Law appears slightly preferable over other possible distributions
- Distinct differences in coefficients for different cases, and also between LES models
- Cloud height distribution appears a power law distribution as well (over shorter range)
- Discrepancy between chord length distribution and area distribution can be explained with a double-gamma kernel

Future Work

Implement simulators to compare LES cloud size distributions with observations Compare against the Romps & Vogelmann analytical method (JAS, 2017) What sets the coefficients for the CSDs and CHDs?

Cloud Size Distributions (CSDs)

- CSDs generally have a similar form from case to case
- Coefficients fluctuate significantly from scene to scene
- The drop off for large cloud sizes depends on time of day (ARM) and organization (RICO)

Cloud Height Distributions (CHDs)

- The cloud height distributions also follow a power law, though naturally over a much smaller range
- A consistent break occurs around ~150m
- This break is likely associated with a transition from forced to active

Cloud transects

Through every cloud a number of rays are shot

Atmospheric System Research

- This leads to the chord length distribution per cloud
- We notice a double gamma distribution: 1 represents the cloud edge, 1 represents the bulk

Chord Length to Area

Start evaluating cloud properties as a function of cloud size

Methodology

- Different LES simulations are used, based on BOMEX, RICO (both maritime) and ARM intercomparison cases
- Also includes are 12 cases from the LASSO alpha 2 database. For each day the WRF setup with the best cloud score is used to setup large domain simulations
- BOMEX, RICO and SAM use UCLALES, with 25m resolution and domain size between 12.5 and 50km
- Original LASSO runs use WRF and SAM, typically at 100m resolution, and domain size up to 24km
- LASSO reruns are done with MicroHH-GPU, with a 25m resolution and 25km domain size For each field, the cloud area and the chord length distributions are determined

Fitting scores

- Averaged over all the cloud scenes, double power law and log-normal have equal KS score pass ratings
- However, Double PL tends to be ranked high more often, and has a lower coefficient of variation between the cases

Distributi on	Para m	Medi an Value	CV	KS Pass Rate	Ran k #1	Rank #2	Rank #3	Rank #4	Rank #5
Power Law	α	2.01	0.085 5	0	0	0	0	0	21
Double Power Law	α ₁ α ₂	1.81 3.05	0.316 0.452	62%	8	5	5	3	0
	C	541	0.655						
Power Law w/ Cutoff	α λ	1.74 0.001 14	0.270	48%	7	7	1	6	0
Log- Normal	μ σ	1.74 1.96	1.01 0.337	62%	3	4	2	12	0
Stretched Exp	λ β	4.40 0.240	1.69 0.632	57%	3	5	13	0	0

Maximum Likelihood Estimators determine the fits

Acknowledgments

- This work is funded by grant DE-SC0017999 of the Department of Energy's Atmospheric System Research program
- Dorothy Pharis and Nicholas Barron were partially funded by Cleveland State University's Undergraduate Summer **Research Program**
- We thank the Ohio Super Computer Center for making the computational resources available

CSD Retrieved from Chord Lengths

Using the overall mean and *cv*, we can reconstruct the CSD from the chord length distribution

BOMEX: 8hrs

Cloudsizes (m)

This method performs well for a variety of datasets

 10^{-4}

 10^{-}

— ABM

— CLM

CLM Corrected

