

# Validating Variance Similarity Functions in the Entrainment Zone **Using Observations and LES Simulations**

<sup>1</sup>M. K. Osman, <sup>2</sup>D. D. Turner, <sup>3</sup>T. Heus, <sup>4</sup>R. Newson,

ARM ASR PI Meeting, 19-23 Mar 2018, Vienna, VA B1 Wed 3:30 - 5:00 pm # 56

<sup>1</sup>CIMSS University of Oklahoma, Norman, OK; <sup>2</sup>NOAA Earth System Research Laboratory Global Systems Division, Boulder, CO; <sup>3</sup>Department of Physics, Cleveland State University, Cleveland, OH; <sup>4</sup>Pacific Northwest National Laboratory, Richland, WA

## Motivation

The water vapor and vertical variances in the entrainment zone have been hypothesized to depend on two distinct functions

- We tested these hypotheses both observationally and numerically using  $\frac{1}{2}$ a Large eddy simulation (LES) modeling
- Observations were made over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site.
- ✤ The cases were identified from 2016 during which the convective boundary layer (CBL) is quasi-stationary and well mixed for at least 2 hours
- \* We simulated the CBL using an LES model for the selected cases at the Vertical profiles of the 2-h mean water vapor mixing (g kg<sup>-1</sup>) and virtual SGP site and derived the variances to test the similarity functions.



potential temperature (K) from Raman lidar and horizontal wind (m/s)

The retrieved coefficients for the redefined formulas (Eqs. 7 & 8), the  $1\sigma$ uncertainty in the coefficients and the degrees of freedom for signal (DFS) for each coefficient from the fitting process are shown in the table below.

## Water vapor variance

#### Vertical wind variance

|   | Coffs<br>c1 | . 1.48 0.60 0.84 | ,    |      | Coffs | Retrieved | 1 $\sigma$ uncertainty | DFS  |
|---|-------------|------------------|------|------|-------|-----------|------------------------|------|
|   |             |                  |      |      | k1    | 4.30      | 1.92                   | 0 71 |
| н |             |                  |      |      |       |           |                        |      |
|   |             |                  |      | k2   | 2.45  | 1.96      | 0.51                   |      |
|   | c2          | 2.58             | 0.77 | 0.91 | k3    | -0.82     | 0.29                   | 0.86 |
|   |             |                  |      | 1 75 |       | 0.02      | 0.23                   |      |
|   |             |                  |      | 1.75 |       |           |                        | 2.09 |

For water vapor variance, the total DFS is 1.75 of the total possible 2, while the total DFS is 2.09 of the total possible 3 for the vertical wind variance.

- The former particularly suggests that observations have high information content on two of the empirical coefficients.



 $\clubsuit$  This suggests that the variances (water vapor and vertical wind) at  $z_i$  do not depend of the Richardson number or the wind shear at z<sub>i</sub>

| $f_q(Ri_E) = \frac{1 + c_r/Ri_E}{1 + 1/Ri_E}$ and for the vertical wind variance (Eq. 2), the function becomes $f_w(Ri_E) = 1 + c_s/Ri_E$ 4                                                                                         | The dependence of the functions (Eq<br>number at $z_i$ . The blue dots are obtained from the<br>magenta dots are obtained from the<br>10 m and 25 m, respectively. The g<br>shown in Eqs. (3 & 4), while the<br>using the the coefficients shown in |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |
| To see if the similarity functions shown in Eqs. (3 & 4) are comparable to functions shown in Eqs. (1b & 2b)                                                                                                                        | best fit for the corresponding data<br>were used in the calculations.                                                                                                                                                                               |
| Attempt made to have general forms of the similarity functions that describe variances at the top of the CBL                                                                                                                        | * The function shown shown in Eq. $f_q(Ri_E)$ does not seem to track the                                                                                                                                                                            |
| Observations and LES data were used to redefine and validate the similarity functions that are more comparable to Eqs. (1b & 2b).                                                                                                   | The newly defined functions for the observational data (i.e., Eqs. 1)                                                                                                                                                                               |
| Data selection and analysis technique                                                                                                                                                                                               | *The newly define functions $(f_a(Ri_B))$                                                                                                                                                                                                           |
| The cases were identified during which the afternoon CBL was quasi-stationary<br>and well mixed layers for 2 h period                                                                                                               | the Richardson number unlike the                                                                                                                                                                                                                    |
| Auto covariance technique was utilized to separate out the instrument random error from the atmospheric variance                                                                                                                    | LES simulations show that the fur                                                                                                                                                                                                                   |
| Assuming that the atmospheric variance, $\overline{q'^2}$ , is mainly as a result of isotropic turbulence within inertial subrange ( <i>Monin and Yaglom</i> 1979), the ACF at lag $\tau$ , $M_{11}(\tau)$ , can be approximated as | This property is also seen from t<br>the vertical wind variance function                                                                                                                                                                            |
| $M_{11}(\tau) = \overline{q'^2} - C\tau^{2/3} \dots 5$                                                                                                                                                                              | The linear fittings reveal that bot                                                                                                                                                                                                                 |

where C is a parameter that contains both the eddy dissipation and the scalar variance dissipation 

qs. 1b, 2b, 3, 4, 7 and 8) on the Richardson tained from observations, while the red and reen dashed lines are from the functions dark dashed lines are from Eqs. (7 & 8) the table. The solid lines are the lines of Constants  $C_q = 0.175 \pm 0.088$  and  $c_w = 0.05 \pm 0.04$ 

(4) seems to track the observation well but observation for smaller or higher Ri<sub>F</sub>

the water vapor variance seem to track better lb & 2b) even for the smaller and larger  $Ri_{F}$ 

 $_{\rm E}$ )) also appear to be roughly constant with previously proposed function

Inctions depend slightly on Ri<sub>F</sub>

the newly defined function (i.e.,  $f_{a}(RiE)$ ) and on for  $Ri_{F} > 6$ .

the same variation with Ri

LES simulations for vertical resolutions of A The observations tend to increase showing an overall larger values of the functions for larger values of wind shear that is not seen in the LES output

## LES and observations comparisons



The relationship between (a) the gradient of water vapor at z<sub>i</sub> and (b) the wind shear at z<sub>i</sub> vs. the Brunt-Vaisala frequency at z<sub>i</sub> obtained from observations and LES simulations (10 m and 25 m vertical resolutions) oth functions (observations) follow an overall 🛛 driven by ARM variational analysis. The solid lines are the lines of best fit for the corresponding data.

## **Description of LES simulations**

- ◆ 22 Large Eddy simulations were performed using MicroHH (*van Heerwaarden et* al, 2018) for the same dates as used for the observations
- Soundary and initial conditions were retrieved using variational analysis (*Xie et* al, 2004)
- Standard runs at 10m resolution and 12.8km domain
- Simulations start at 6am LT and end at 7pm LT
- Additional simulations were run at 5m, 25m, and 50m resolution to test resolution independence
- Variances etc were calculated spatially, and then averaged over the same 2 h period as the observations



## The newly defined functions are



where c1, c2, k1, k2 and k3 are constants to be determined.

## Summary and Future outlook

• LES simulations show strong correlations between  $g_{E}^{2}$  and  $N_{E}^{2}$  (0.80 and 0.89 for 10m and 25m resolutions, respectively)

#### Observation shows weak correlations

• Observations and LES show weak correlations between  $N_E^2$  and  $S_E^2$  but both show large ranges of the Brunt-Vaisala frequency and wind shear at  $z_i$  suggesting different atmospheric conditions at  $z_i$ 

\* Previously proposed f<sub>α</sub>(Ri<sub>E</sub>) in the water vapor variance similarity equation appears not to fit the obs well, particularly at smaller and higher Ri<sub>E</sub> The newly defined functions that used retrieved values seem to track better the observation data including at both smaller and larger values of Ri<sub>F</sub>

\* The LES simulations show no-to-little dependence of the functions on the Richardson number or wind shear at z<sub>i</sub>

\* We would like to extend our study using the same procedure to validate Sorbjan's 2006 proposed expression for the profiles of the moments in the CBL with shear

Acknowledgement >This project is funded by award DE-SC0014375 of the Atmospheric System Research program of the Department of Energy