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____ Abstract Laboratory Results: H Ambient Fire Observations
Carbonaceous aerosols (CAs) from biomass burning (BB) have increased The mean hygroscopicity of BB CAs from various fuels ranged from nearly We sampled smoke from 5 wildfire plumes that included fresh plumes from
substantially with the observed warming and drying of the US. While hydrophobic (fRH35% = 1) to very hydrophilic (fRH8% =2 1) values typical of 4 small to moderate sized fires and control burns near Los Alamos, NM and
wildfires are projected to intensify in the future missing knowledge of BB pure deliquescent salts. We also measured some fRH8>% values <1 indicative an aged plume (>3 days) from the large labor day Pacific NW fires in 2017.
CAs hampers assessments. Observations show that warming effects of BB of particle collapse at high RH. The « values varied from 0.004 to 0.18 and The Los Alamos fires burned coniferous and mixed-coniferous species
CAs can dominate over cooling effects due to enhanced light absorption by correlated well with fuel and smoke inorganic content. Invasive halophytes including ponderosa, pinion, juniper, and deciduous aspen. Ambient light
internal mixing. However, if internal mixing reduces the aerosol lifetime it with high salt content exhibit greater water uptake than native coniferous scattering measured during the larger smoke impacted events, occurring on
would lower their atmospheric burden. We report observations of BB smoke species with low 1norganic content. Combustion temperature and phase play June 27", was determined to have a x_ = 0.024 + 0.005 (fRH8%) = 1.15).
to help elucidate mechanisms that control this tradeoft. a secondary role. High temperature 1gnition methods create flaming Using laboratory calculated hygroscopicity for the atforementioned fuels, a
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