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Series of sensitivity experiments were configured to investigate the effects of cloud condensation nuclei
(CCN) loading on deep convective systems in tropical maritime and mid-latitude continental conditions.
A new approach was adopted to change aerosol fields of two different cases (tropical and mid-latitude)
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MERRAero Overview

Particles categories and bins in the updated WRF-SBM 43 bins

Experimental Design

Aerosol and CAPE Sensitivity Simulations with the NASA WRF Bin Microphysical Model

TWP-ICE sensitivity simulations

MC3E sensitivity simulations
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Color coding criteria
“1”. least polluted run.
“5”: most polluted run.

MC3E

Schematic diagram summarizing the responses to aerosol and CAPE
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/AS”: stratiform cloud area; A_,,: convective cloud area; qi, gs, qg, gh, \
gc, qr- mixing ratios of cloud ice, snow, graupel, hail, cloud water, and
rain, respectively; LH: net latent heating due to cloud microphysics

processes; Vt: magnitudes of up/downdrafts; P,. surface precipitation

amounts from the stratiform cloud area; P_,,,: those from the convective
\\cloud area; Nc:. CCN concentration. J

The effects on surface precipitation were similar overall for the TWP-
ICE and MC3E cases and in the control and vapor (CAPE) reduced
runs.

The precipitation from convective areas increases in response to
CCN increases, and its change has a more significant impact on the
total precipitation than stratiform precipitation.

The increase in CCN loading yielded the opposite impacts on the
changes in the areal coverages of convective and stratiform clouds
in the TWP-ICE control and vapor-reduced runs, while they were
similar in the MC3E runs.

Changes in supercooled water due to CCN loading had different
impacts on the cloud microphysics in the TWP-ICE and MC3E
simulations. The dry middle troposphere in the continental case
focused the riming of supercooled water on a limited number of non-
rimed particles; consequently, rimed particles transitioned to hail. In
contrast for the maritime case, increased supercooled water led to
increased riming that was dispersed over more abundant non-rimed
particles, leading to less dense rimed particles like graupel.
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The 5 sets of simulation results for different aerosol
conditions are analyzed in the form of the color-
coding chart.
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