Exploring the Impacts of Water Vapor on New Particle Formation Mechanisms
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Approach

* Using a flow reactor and direct measurements of size-resolved nanoparticle
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stabilized Criegee Intermediate (sCl, see rxns IV and V below), or the formation | — TDCIMS measures composition of € ecflod 2¥(g) !N n;c e;tlon D, (nm) Diameter (nm)
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nucleation and significantly increased acid:base in sub-12 nm particles.
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What NPF Mechanisms Are Explained by these Observations?

T @ © Concl usions constant at 1:1 over all sizes measured.
Contributes;(r)orwtcr:eation/early @ @ @ @ DMA + HNO3 nanopartiCIES
suppressedbywatervapor | (D Q © © Monoterpene oxidation experiments show that: o 210" = — o
NOT detected by nitrate-ciMs () Q @ @ * High RH suppresses NPF from monoterpene oxidation, but not by I =L M HROCMA SR
decreasing RO, autoxidation products. 8 35 10 _ — teuiul it il
a-Pinene Ozonolysis: Reaction Pathways Cannot rule out the contribution of sCl accretion products, which are ;Z Ef 04—t i ; { i 5 ;
ﬁi“’ ﬁ%% | ﬁw ﬁm _ ﬁ/» not visible using NO,-TI-CIMS. T H ! T
_3» _;.. o ‘ t—w,_ o + H,0O/alcohol/carboxlic aui 0 ! o ] ] . 0.5
‘ , [ ‘ "_4 G NALE Yoo ﬁ\gw Also possible that HOM clusters may react with water vapor in such a T T T T :
CioHyg  POZ CioHys05 ¢Cl CyoH 605 SCI CyoH,605 \.\h a-hydroxy hydroperoxide  Pinoni Acid Diameter (nm) Diameter (nm)
14----‘/111 v 2 e R&zgﬁl} way as to suppress further growth . _ - _ .
WL _ _ , Discussion. Cluster stability calculations DMA + HNO; cluster evaporation rates
éj@O'H ; ﬁOWO}R ,@L}NOWR i Acid-base reactive uptake experiments show that: were performed on the HNO. system . ]
: CoH;70" 0 OVR More Oxidized Products . . .. \ oo IR 10 s . . 3_1011;
a /ﬁi\,o L sowacs b1 * For the base + sulfuric acid system, water stabilizes clusters and leads to using ACDC cluster dynamic s3c ode. The L
RS IS O wor e ‘ﬁﬁm “““““ 0 mﬁg higher concentrations from an increased nucleation rate. Water changes ~ddition of one H.O to the cluster'
OH CroH1504° . g : Z . . Ez 3-10° 102 6-10° 3 g 10| 410 8 1o‘°§
% ﬁ?ﬁo i . we G Reference acid:base ratio for some bases (e.g., DMA). . 2" : o ¢ e
; ] MonowecROOH L o ) , o increased evaporation rates by a factor | 0B Tow °F
_____________ is_t.gffze_l%ti(iﬂ_l?‘?z;_-_-------- Vomomer: ROH €101 Criln JL', X., fhee,ds-s, Haﬁ'j"NAbzaft'J' P.D., For the base + nitric acid system, water pI‘OVIdES no stabilization to of 1011 Water doesn’t stabilize clusters — T
S A e N e ¥ iang, J., and Smith, J. N.: Relative i A . . . 1 “Nivoacid ' e e
ClliOy 2nd genersion R Cfs0 e Gasonl (U0 GO humidity effect on the formation of nascent clusters. High reactant volatilities mean that particles are only dry 1 H-.O
: ,l, 0 : RO, o, HOz highly oxidized molecules and new . 2
oo e cuor N S oarticles during monoterpene stable once acid and base undergo proton exchange. References
: H shift ! 1 ! idation, A . Chem. Phys., 19,
Autoxidation i o : O 80 ﬁHo o) o - O\lgoi ;);;Sa_tllggo tmos. them. Fhys Haihan Chen, Sabrina Chee, Michael J. Lawler, Kelley C. Barsanti, Bryan M. Wong & James N. Smith (2018) Size resolved chemical
: : : \ o ) 5 : : 10. ) composition of nanoparticles from reactions of sulfuric acid with ammonia and dimethylamine, Aerosol Science and
: — ' : Ké’ ) flfo I https.//d0|'.org/10.5194/acp 19-1555
- lehiﬂ L e, Comeckoor | 2019, 2019, AC k n OWI e d ge m e nt Technology, 52:10, 1120-1133, DOI: 10.1080/02786826.2018.1490005
t CioH 001 my/ng, generation R+ CgHysOny “(,,RO{ROHLHH]ogmmﬂ,ng Sabrina Chee, Nanna Myllys, Kelley C. Barsanti, Bryan M. Wong, and James N. Smith (2019) An Experimental and Modeling Study of
+0, : P Monomer| oy b GO . Nanoparticle Formation and Growth from Dimethylamine and Nitric Acid, The Journal of Physical Chemistry A Just Accepted Manuscript
0 * s b Funding from DOE ARM and ASR programs and from NSF ECS (HNO, expts) DOI: 10,1021 /acs.jpca.9b03326

.......................................




