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Introduction

Deep convective cloud systems serve as a primary mechanism for the transfer of heat, moisture
. . . . . : : t~An=1 R°
and momentum through vertical air motion and entrainment/detrainment processes. However, Tracked convective cloud in CSAPR2 PPI at Elevation=1.5
impacts of vertical transport on redistribution of mass and water at higher altitudes are still unclear. 03 15 uTC 03 30 UTC 03 45 UTC 04 oo UTC
The present study investigated convective core characteristics, and upper-level microphysical 3 SraP R e Y- wo Qs o
characteristics in deep convective clouds, using C-band scanning ARM precipitation radar %
(CSAPR2) measurements during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) =
field campaign. <
CSAPRZ2 can perform high resolution, rapid scan, and full polarimetric measurements. We mainly 2
used Hemi-Spheric Range-Height Indicator (HSRHI) measurements to estimate vertical air motion =
and track polarimetric variables of deep convective clouds. =
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:_,512 Doppler velocity (positive away) [Er;g/s] _  Kpp and IWC were tracked using HSRHI scans at azimuth angle of 120°, which was consistent with the
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T 16 based relationships proposed by Conve(;:t:;]/e co[]etrp])ropedrtles were estimated from HSRHI measurements for a deep convective cloud when it
8 Giangrande et al. (2013). passed through the radar.
0 * Mass flux and mean updraft (w) were estimated for updraft region with updraft > 2 m/s.
True Radial
-8 Spl;ed comlponent  Mean vertical divergence was estimated usmg az (Mullendore et al. 2013).
—16 —> Mean horizontal wind « IWC was estimated from IWC = 0.71(Kpp/1.82)%652928 (Zis in linear scale) proposed by Bukovcic et al.
- —gg f ﬂ Vertical air motion (2018, adjusted for C band).
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Distance from radar [km] « Vertical convergence found in the upper-level suggested upper-level detrainment.
| | | | | * The vertical convergence region corresponded to larger Ky regions.
15 Hydrometeor fall velocity | [m/ss] - Estimated vertical air motion [m{%] «  Kpp could be an indicator of upper-level detrainment and be used for INC estimate and budget
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Distance from radar [km] CSAPR2 HSRHI measurements can also be used to track microphysical characteristics.
’ HSRHI can be used to estimate vertical air motion in deep convective clouds passing through R * The vertical t:ortvergence region Correspanded to larger Kpp regions, suggesting that Kpp
o dlElr could be an indicator of upper-level detrainment.
« CSAPR2 HSRHI measurements revealed a complex structure of vertical velocity in convective * Most of deep convective cases from CACTI were associated with northwesterly to north-
. Clouds. y northwesterly winds at low and upper altitudes. HSRHI scans at azimuth angle of 120° were

used to track convective clouds.

Future Work

* Analyze all convective clouds tracked by HSRHI and PPI scans during CACTI.

« Estimate vertical velocity and convective core characteristics associated with cloud evolution
using HSRHI and PPl measurements.

« Estimate IWC using the radar measurements, and analyze water budget.
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