New Microphysical Insights from Analysis of Holographic Data during ACE-ENA

Neel Desail*, Yangang Liu!, Susanne Glienke?3 and Raymond Shaw* ASR

' Atmospheric

1 Brookhaven National Laboratory, 2Johannes Gutenberg University, Mainz, Germany ‘g pmospheric
3> Max Planck Institute for Chemistry, Mainz, Germany, 4 Michigan Technological University, Houghton, Ml

Corresponding author*: Neel Desai, desai@bnl.gov

BROOKHIAEN

NATIONAL LABORATORY

Introduction Mixing type vs altitude P1 vs P2
e HOLODEC — Holographic Detector for Clouds 1l was flown e For each flight altitude, mixing LUV Cloud Top IO'6 * P1 cloud middle also showed the same mixing tendency as
aboard the G1 aircraft during ACE-ENA research flights. diagrams show primarily in- 3! 1 e cloud base, but cloud top was mostly in-homogeneous.
homogeneous mixing =
e Each hologram has a measurement volume of 13 cm3and occurring. A e P2 did not show the same mixing type variability with
droplet diameter measurement range between 5um — 1 altitude or flight direction.
Imm. — em o g e * This is contrary to prior

concept of mixing being in- U  This suggests that this mixing variability may not be
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 High resolution local variability in cloud properties such as arowth 0.2 le |
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Objectives Variability at constant altitude Auto-conversion
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1. To investigate cloud microphysical variability at centimeter e Separating the P1 cloud base Y. icular 1 I Both P1 and P2 cloud decks
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Auto-conversion analysis shows interspersed drizzling
(lucky) parcels instead of a homogeneous drizzling deck.
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