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Ice Nucleation of isoprene-derived SOA components with and without pre-cooling

acid, which agrees with the glass transition results modelled by DeRieux et al. (2018).

The results show
that 1ce nucleation
of 2-methyltetrol, a

predominant
1soprene-SOA
component, 1S
enhanced when the
phase state
changes.

~ —— Conclusions and Acknowledgement —

*The systematic study of ice nucleation of black carbon particle types
indicates that surface chemistry and microstructures of the soot play a
role 1n 1ce nucleation properties.

*The glass transition temperatures of the organic aerosols can be
influenced by cooling rate and relative humidity. Experimental study
combined with modeling shows that an increasing cooling rate from 2
K/min to 10 K/min can reduce the glass transition by 4-6 K,
equivalent to 400-800 meters of height in the troposphere.

*Controlling the temperature history of secondary organic aerosol
particles, such that they can form glasses, increases their ice
nucleation activity.
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