

Aged Biomass Burning during LASIC: Understanding BC-dominated Absorbing Aerosol

Allison C. Aiken¹, Manvendra Dubey¹, James Lee¹, Francesca Gallo¹, Petr Chylek¹, Kip Carrico^{2,} Thomas Watson³, Paquita Zuidema⁴

¹Earth Systems Observations, Los Alamos National Laboratory; ²New Mexico Institute of Mining and Technology; ³Brookhaven National Laboratory; ⁴University of Miami

Climate Impacts of Biomass Burning (BB)

- Biomass Burning emissions: largest global source of Carbonaceous aerosols to the atmosphere
- BB aerosols have complex chemistries and optical properties

- Upon emission: internal and external mixtures with complex climate impacts (direct effects: radiation; indirect effects: clouds, precipitation)
- Atmospheric aging: aerosols undergo changes in their physical, optical and chemical properties due to processing in the atmosphere such as aggregation/agglomeration, condensation, oxidation, photochemistry, polymerization, vaporization
- Direct measurements by ARM AOS's can be probed in more detail under more controlled conditions to constrain atmospheric observations and atmospheric processing
 - ARM and Lab direct measurements: refractory Black Carbon (rBC), non-refractory Organic Carbon (OC)
 S. Liu, GRL, 2014; D. Liu, Nat Geo, 2017
 - Larger uncertainties in measurements (mass quantification and optical properties) require targeted lab study: Brown Carbon (BrC; light-absorbing component of OC), Tar Balls *Girotto et al.*, *ES&T Letters*, 2019

Layered Atlantic Smoke Interactions with Clouds (LASIC) – ARM Campaign

- Southern Africa: Largest BB source
 - Fuels: Land clearing wood and grassland fires
 - BB Season peaks from June –
 November
- LASIC ARM AMF1
 - Ascension Island is in the Southern Atlantic Ocean
 - June 2016 October 2017
 sampling 2 BB Seasons
 Zuidema et al., Geophysical
 Research Letters, 2018

Zuidema, BAMS, 2016

- Aerosol Observing System (AOS) aerosols within the MBL
 Uin, Springston, Aiken, et al., submitted to JTECH
 - Submicron 1 minute average aerosol data (<1 µm diameter)
 - In situ aerosol number, CO, absorption of BB plumes
- 1 minute data largest plumes during August 2016
 - Submicron number concentration of ~1000 #/cc
 - Absorption coefficients reach 30 Mm⁻¹
 - rBC concentrations > 1.5 μ g m⁻³, Δ CO > 120 ppbv

BB Chemical Composition and Optical Properties

Non-refractory Organic Carbon

- Non-refractory submicron aerosol mass is dominated by highly oxygenated Organics (OOA)
- LASIC Organic Aerosol (OA) chemical composition is contrasted with Ambient BB from 3 types of US Forest Fires sampled in 2017 (long range transported plumes, local BB and prescribed burns)
 - LASIC BB has the Highest Oxygen (f44) and lowest Hydrogen content (f43)
 - Typical of aged organics (LV-OOA; *Jimenez et al.*, *Science 2009*) with little no primary BB signatures (f60)

- Elemental Analysis unit mass resolution approximation
 - Aiken et al., ES&T, 2008
 - $O/C = 0.98 \pm 0.12$
 - $OM/OC = 2.41 \pm 0.16$

Refractory Black Carbon

- BB plumes are dominated optically by Black Carbon
- Absorption Angstrom
 Exponent (AAE)

• AAE ~1.0 indicates absorption is dominated by rBC cores < ~200 nm d.

Optical Properties

- Absorption Angstrom Exponent (AAE) and Single Scatter Albedo (SSA) from LASIC and other ambient BB events
 - AAE ~1 indicate most of the absorbance is from BC as is seen in the LASIC data
 - Higher observed values indicate BrC and is seen in the fresher BB plumes (Saleh R. et al., Nat Geo, 2014)
- Single Scatter Albedo (SSA)
 - SSA ~1 for pure scattering particles
 - SSA ≤0.85 indicates a mixture (internal/external)

Laboratory Biomass Burning and Model Comparison

- A single fuel type can produce a range of aerosol optical properties Russian Olive (SW US Invasive Species)
- LANL single fuel lab burns Gomez et al., JGR-A, 2018, Romonosksy et al., JGR-A, 2019

ENA Local Combustion: Supplementary Site (S1) and Aerosol Filter Development

- ENA AOS main facility (C1) is impacted by local sources due to the location near a local airport and roadway
- An aerosol Supplementary Site (S1) was installed during ACE-ENA (July 2017 April 2018) ~0.75 km from C1 to constrain sources
- Summer (shown below) and Winter dominant wind directions and particulate sources are compared at C1 and S1
 - CPC number concentration (7 nm 1 μm)
 - UHSAS number concentration (60 nm $1 \mu m$)
 - Met Sensor (Wind Speed and Direction)

- Airport Operational Periods dominate local sources at C1
- CPC number concentration can be used to flag local sources with a modified Standard Deviation Method to identify outliers
- Diurnal profile (shown below) and monthly averages of submicron concentrations from 2016 2018 are between 200 600 #/cc

- ACE-ENA Manuscript Gallo et al., in prep for AMT
- Presentation at ACE-ENA Session (Thurs @ 1:50PM)

