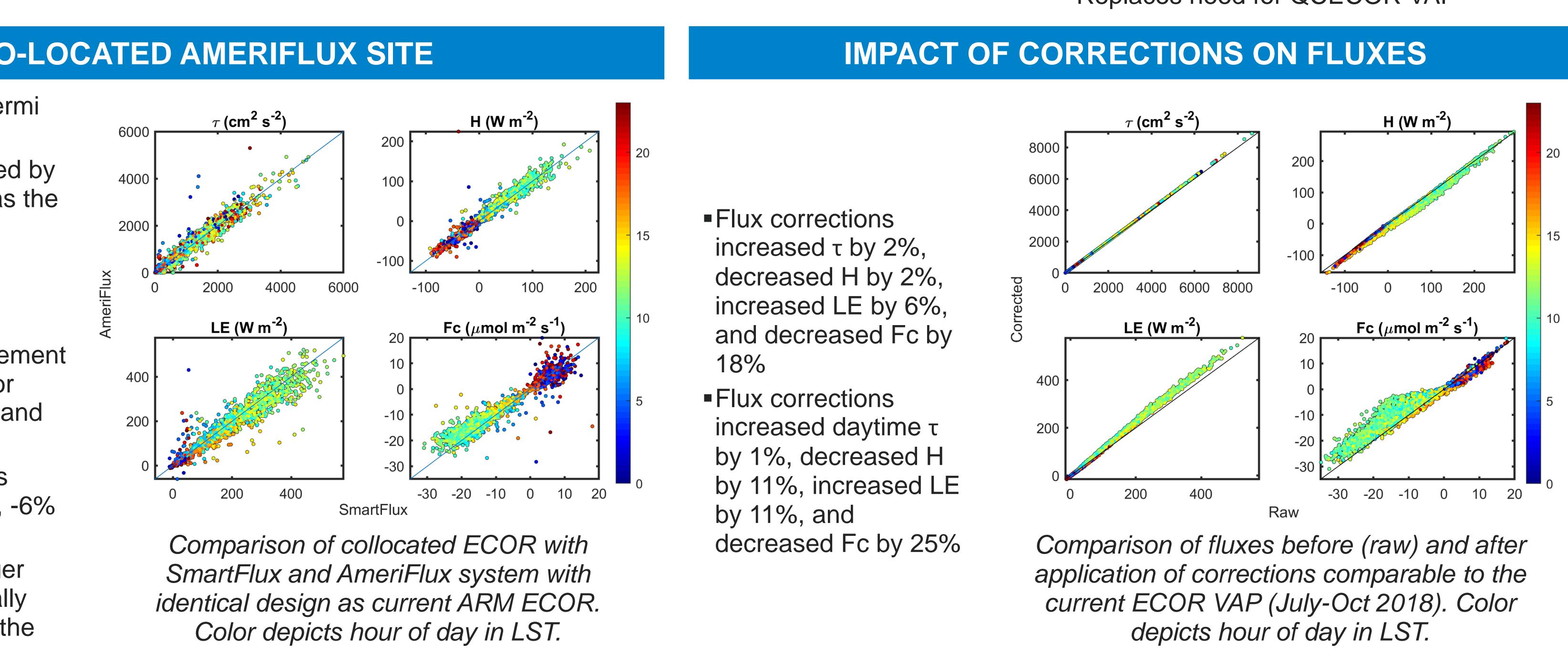
ECOR SmartFlux: Upgrading the ARM Eddy Correlation Flux Measurement Systems

Ryan C Sullivan and David R Cook, Argonne National Laboratory

INTRODUCTION AND MOTIVATION

- •ARM has been measuring near-surface turbulent fluxes since 1992 using the Energy Balance Bowen Ratio (EBBR) systems, and since 2003 using the Eddy Correlation Flux Measurement (ECOR) systems
- The Gill sonic anemometers and LI-COR H_2O/CO_2 gas analyzers used in the ECOR are no longer manufactured, can no longer be repaired, and ARM is running out of spares, necessitating upgrading of the system
- In addition to upgrading the anemometer and gas analyzer, the new ECOR systems will differ from the current ECOR systems in that they will use EddyPro processing software from within a SmartFlux box (containing a microcomputer) to produce both raw and fully corrected fluxes as outputs to be ingested into the ARM archive
- New data stream, ECORSF, will replace both ECOR and QCECOR datastreams


COMPARISON TO CO-LOCATED AMERIFLUX SITE

- ECORSF collocated intercomparison with Fermi Prairie AmeriFlux site July-Aug 2018
- •AmeriFlux system was designed and operated by the former instrument mentor (Cook), and has the same components and specifications as the current ECOR
- Fully corrected, high quality fluxes were considered (qc flags = 0)
- Flux R² between 89% and 95%: lowest agreement for CO₂ fluxes (Fc) and highest agreement for sensible heat fluxes (H), with momentum (τ) and latent heat fluxes (LE) agreement middling
- Mean Normalized Bias (MNB > 0 % indicates |ECORSF| > |AmeriFlux|) was only 1% for H, -6% for τ , -5% for Fc, and 11% for LE
- •Magnitude of the daytime LE and Fc are larger from ECORSF than from AmeriFlux, potentially due to increased H₂O and CO₂ sensitivity of the newer LI-7500DS

NEXT STEPS

- The replacement systems have been purchased, and will be built at ANL upon delivery
- Expected to replace all SGP ECOR systems summer/fall 2019
- Replacement of remaining systems at ENA, NSA, and AMF1/2/3 to follow

HARDWARE

Newer Windmaster sonic anemometer from Gill with improvements to transducers and temperature calculations LI-7500DS open-path gas analyzer: reduced cost and power usage -Intercomparison of LI-7500DS and LI-7500RS models performed by LI-COR: regression slopes and R² for CO_2 and H_2O fluxes near unity SmartFlux microprocessor

PROCESSING AND CORRECTIONS

ACKNOWLEDGEMENTS

This work was supported the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357

rcsullivan@anl.gov

Data processing and flux corrections computed in SmartFlux microprocessor LI-COR EddyPro processing software Raw data saved in ARM archive allowing custom reprocessing

Coordinate rotation, time lag, WPL, and low/high frequency spectral corrections QC: steady state, developed turbulence Flags: spikes, amplitude resolution, dropouts, absolute limits, skewness/kurtosis Replaces need for QCECOR VAP

