Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia

 
Poster PDF

Authors

Scot T. Martin — Harvard University
Suzane Simoes De Sa — Harvard University

Category

GoAmazon – Clouds and aerosols in Amazonia

Description

The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March, 2014 of the wet season, as part of the GoAmazon2014/15 experiment. Mass spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37% of the variability in the factor loading. After segregation of the data set by NOy concentration, the sulfate concentration explained up to 75% of the variability in factor loading within the NO¬¬y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NOy concentration from 0.5 to 2 ppb. The suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NOy than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.