The De-Icing Comparison Experiment (D-ICE): A campaign for improving data retention rates of radiometric measurements under icing conditions in cold regions

 
Poster PDF

Authors

Christopher J Cox — Cooperative Institute for Research in Environmental Science
Sara Morris — Cooperative Institute for Research in Environmental Science
Chuck N. Long (deceased) — NOAA- Earth System Research Laboratory

Category

Radiation

Description

Longwave and shortwave radiative fluxes are fundamental quantities regularly observed globally using broadband radiometers. In cold climates, frost, rime, snow and ice (collectively, ìicingî) frequently builds up on sensor windows, contaminating measurements. Since icing occurs under particular meteorological conditions, associated data losses constitutes a climatological bias. Furthermore, the signal caused by ice is difficult to distinguish from that of clouds, hampering efforts to identify contaminated from real data in post-processing. Because of the sensitivity of radiometers to internal temperature instabilities, there are limitations to using heat as a de-icing method. The magnitude of this problem is indicated by the large number of research institutions and commercial vendors that have developed various de-icing strategies. The D-ICE campaign has been designed to bring together a large number of currently available systems to quantitatively evaluate and compare ice-migration strategies and also to characterize the potentially adverse effects of the techniques themselves. For D-ICE, a variety of automated approaches making use of ventilation, heating, modified housings and alcohol spray are being evaluated alongside standard units operating with only the regularly scheduled manual cleaning by human operators at the NOAA Baseline Surface Radiation Network (BSRN) station in Utqiagvik (formerly Barrow), Alaska. Previous experience within the BSRN community suggests that aspiration of ambient air alone may be sufficient to maintain ice-free radiometers without increasing measurement uncertainty during icing conditions, forming the main guiding hypothesis of the experiment. Icing on the sensors is monitored visually using cameras recording images every 15 minutes and quantitatively using an icing probe and met station. The effects of applied heat on infrared loss in pyranometers will be analyzed and the integrated effect of icing on monthly averages will be assessed by comparing ice-mitigated and unmitigated systems. The project is a community effort led by NOAA in collaboration with the BSRN Cold Climates Issues Working Group (CCIWG) in partnership with industry representatives and research institutes. The campaign will operate for a full annual cycle from August 2017 through 2018.