Aerosol Optical Measurements from Detling, UK during ClearfLo

Allison C. Aiken, Kyle Gorkowski, Manvendra K. Dubey
Los Alamos National Laboratory, EES-14, Los Alamos, NM, USA

Leah Williams, Scott Herndon, Andrew Freedman, Sally Ng*, Paola Massoli, John Jayne, Ed Fortner, Puneet Chhabra, Jon Franklin, Doug Worsnop
Aerodyne Research, Inc., Billerica, MA, USA
*now at Georgia Tech

James Allan, Nikki Young, James Whitehead
The University of Manchester, Manchester, UK

Claudio Mazzoleni
Michigan Tech University

... and the rest of the Detling Team and support staff

March 14, 2012
DOE ASR Science Team Meeting
Arlington, VA
Outline – Detling (ClearfLo)

- **Detling (Kent Showgrounds)**
 - London: ~33 miles WNW
 - Maidstone: ~3 miles SW
 - Power Station: ~8 miles North
 - Highways: ~0.15 mi S; A249 (1.5 mi S; M20)
 - Continental EUR: 50+ miles E/SE

- **On-line Instrumentation**
 - Aerosol: PASS-3, PASS-UV, SP2, CAPS, SMPS, LAS
 - Gas-phase: CO₂, H₂O, CH₄

- **Off-line Filter Samples**
 - 2-6 hour Ambient and Denuded: SEM/XRD
 - 24/48 hour: C-13 (Total Carbon and WSOC)

http://www.clearflo.ac.uk/
Experimental Set-up

- **Detling ST1**
 - Aerosol line: behind the ARI Thermal Denuder
 - PASS-3: scattering and absorption (781, 532, 405 nm)
 - SP2: black carbon (BC) number, mass, size distribution
 - SMPS: size distribution
 - Gas-phase line: CO$_2$, H$_2$O, CH$_4$

- **Detling PC1**
 - Line 1 – PASS-3, LAS, TD, SEM/XRD filters
 - Line 2 – 10 LPM quartz filters for isotopic analysis

- **North Kensington**
 - Manchester Aerosol TD line: PASS-UV
 - Scattering and absorption at 375 nm
 - Duplicate of Detling aerosol measurements
 - Same TD temperatures, same TD, similar flow through the TD
Time Series

EUR? Outflow

London Outflow

Kingsnorth Power Station

![Time Series Chart](chart.png)
Extinction = Absorption + Scattering?
CAPS and PASS3

- CAPS Extinction at 445 nm (TD line)
- PASS-3 Absorption + Scattering at 405 nm corrected to 445 nm
 - 2nd half of the campaign intercomparison
 - EAE from PASS data = 1.8 ($R^2 = 0.8$)
 - Good first comparison of CAPS and PASS
 - Need to determine EAE from CAPS data
BC Increases with Incomplete Combustion (CO/CO₂)
Absorption Enhancement? Ambient vs 250°C TD

- Need to be corrected for TD losses (Huffman et al.)
- Will be compared with SP2, SP-AMS
- Scattering enhanced by ~2-10x
Conclusions

- Rich dataset on BC measurements with thermal denuder
 - Optical Properties: SP2, CAPS, PASS
 - Size: SMPS and LAS
 - Chemical: AMS, SP-AMS, CIMS

- Extinction from CAPS = PASS Absorption + Scattering

- BC increases with Inefficient Combustion (CO/CO₂)

- Evaluating absorption enhancements of BC coatings
 (TD losses, background corrections, uncertainties)

- Working with ClearfLo team on integrating chemical
 measurements (ARI), SEM imaging (Mazzoleni), testing
 mixing state models (Cappa), comparing data with North
 Kensington site (Allan)
Acknowledgements

- DOE ASR
- LANL Director’s Postdoctoral Fellowship
- ClearfLo
- Kent Showground
Ambient PASS3 EAE’s

- $EAE_{781/405} = 1.85$ ($R^2 = 0.84$)
- $EAE_{532/405} = 1.15$ ($R^2 = 0.95$)
- $EAE_{781/532} = 2.30$ ($R^2 = 0.87$)
- Average = 1.77

$$\beta_{\lambda_0} = \left(\frac{\lambda}{\lambda_0}\right)^{-AE}$$
Operated by Los Alamos National Security, LLC for NNSA

TD (all Temperatures) PASS3 EAE’s

- $EAE_{781/405} = 1.10 \ (R^2 = 0.81)$
- $EAE_{532/405} = 0.82 \ (R^2 = 0.91)$
- $EAE_{781/532} = 1.86 \ (R^2 = 0.87)$
- **Average** = 1.3

\[
\beta_{\lambda} = \left(\frac{\lambda}{\lambda_0} \right)^{-AE} \\
\beta_{\lambda_0} = \left(\frac{\lambda}{\lambda_0} \right)^{-AE}
\]
Ambient PASS3 SAE’s

- $\text{SAE}_{781/405} = 1.89 \ (R^2 = 0.89)$
- $\text{SAE}_{532/405} = 1.21 \ (R^2 = 0.96)$
- $\text{SAE}_{781/532} = 2.37 \ (R^2 = 0.89)$
- **Average** = 1.82

\[
\beta_{\lambda} = \left(\frac{\lambda}{\lambda_0}\right)^{-AE}
\]
Ambient PASS3 AAE’s

- $\text{AAE}_{781/405} = 1.10$ ($R^2 = 0.55$)
- $\text{AAE}_{532/405} = -0.07$ ($R^2 = 0.44$)
- $\text{AAE}_{781/532} = 2.07$ ($R^2 = 0.39$)
- Average $= 1.03$

\[
\beta_{\lambda} = \left(\frac{\lambda}{\lambda_0} \right)^{-\text{AE}}
\]
PASS3 Ambient and Denuded
Ambient Absorption vs Gasphase

- 1 min ambient data
Ambient Absorption vs CO and CO\textsubscript{2}

- 10 minute ambient data: 405 nm, 532 nm, 781 nm
Ambient Absorption vs CO/CO$_2$
Denuded Extinction: PASS3 and CAPS

- CAPS Extinction at 445 nm (TD line)
- PASS-3 Absorption + Scattering at 405 nm corrected to 445 nm
 - 2nd half of the campaign intercomparison
 - All temperatures
 - Initial assumption, lambda = 1 (BC)
 - High R^2 0.985
 - Best fit for lambda = 1.63*
 - EAE from PASS data = 1.1(1.3) ($R^2 = 0.8$)
Extinction: PASS-3 and CAPS

- CAPS Extinction at 450 nm (TD line)
- PASS-3 Absorption + Scattering at 405 nm corrected to 450 nm (assuming \(\lambda = 1 \))
 - Appears to agree well after 1/29
 - Prior to then CAPS is often higher than PASS
Absorption Ratio AMB/TD for all 4 Temperatures
Absorption Enhancement?
Little W of Power Plant w High Winds – not sure (Jan 31- Feb 1)
London Outflow (Feb 3-4)
Kingsnorth Power Station (Feb 10)
Background

- Most aerosols cool the atmosphere by scattering radiation
- Absorbing aerosols, e.g. black carbon (BC) from combustion and hematite in dust, absorb radiation
 - → warming the atmosphere
- BC = most uncertain factor in global warming
Instrumentation

- **SP2**: Direct, online measurement of Black Carbon (BC) mass
 - Single particle incandescence and scattering
 - Highly sensitive: LOD \(\leq 10 \text{ ng/m}^3 \) (< 0.4/cm³)
 - BC size (derived from mass: Approx. 50-700 nm)

- **PASS**: Direct, online measurement of absorption and scattering
 - 375, 405, 532, 781 nm wavelengths
 - Aerosol Absorption and Scattering coefficients \((B_{\text{abs}}, B_{\text{sca}})\)
 - Single Scatter Albedo (SSA)

 - Wavelength-dependent mass absorption coefficients (MAC’s)

 \[
 \text{MAC}(\lambda) = \frac{B_{\text{abs}}(\lambda)}{m_{\text{BC}}}
 \]
Mass Absorption Coefficients (MAC’s)

- Cross et al., ACP, 2010
- Propane soot: Fresh fractal, uncoated (denuded)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>781</td>
<td>4.16 m² g⁻¹</td>
</tr>
<tr>
<td>532</td>
<td>8.11 m² g⁻¹</td>
</tr>
<tr>
<td>405</td>
<td>10.0 m² g⁻¹</td>
</tr>
</tbody>
</table>

- Internal mixtures (coatings)
- External mixtures (brown carbon)
- Internal and External