ISDAC LES Intercomparison:
Setup overview and preliminary results (Mikhail Ovchinnikov)

• Ideas introduced at ASR STM 2011, refined at the working group meeting Sept 2011.
• Setup released (Dec. 1, 2011)
• First round of simulations (March 1, 2012) and ongoing.
• Additional simulations are likely, so IT’S NOT TOO LATE TO JOIN

https://engineering.arm.gov/~mikhail/ISDAC_F31.html

Arctic mixed-phase clouds: ISDAC flight 31
A case description for LES intercomparison

DOE Atmospheric System Research (ASR) Program, Cloud-Aerosol-Precipitation Interactions (CAPI) Working Group; Global Atmospheric System Studies (GASS); WMO Cloud Modeling Workshop (CMW)

Mikhail Ovchinnikov1, Andrew S. Ackerman2, Alex Avramov3, Gijs de Boer4, Ann M. Fridlind5, Jerry Harrington5, Steve Ghan4, Alexei Korolev5, Adrian Locke6, Greg McFarquhar6, Hugh Morrison7, Ben Shipway8, and Matt Shupe5

1Pacific Northwest National Laboratory, Richland, WA, USA
2NASA Goddard Institute for Space Studies, New York, NY, USA
3Massachusetts Institute of Technology, Cambridge, MA, USA
4National Oceanic and Atmospheric Administration, Boulder, CO, USA
5Penn State, University Park, PA, USA
6Environment Canada, Toronto, Canada
7National Center for Atmospheric Research, Boulder, CO, USA
8Met Office, Exeter, United Kingdom
9University of Illinois at Urbana-Champaign, Urbana, IL, USA

1. Background and motivation
The goal of this intercomparison is to assess factors controlling the stability of shallow mixed-phase Arctic clouds and examine the sensitivity of cloud parameters simulated by high-resolution numerical models to ice particle properties, such as number concentration, growth rate, and sedimentation velocity. Because liquid-ice partitioning is tightly coupled with the intensity of vertical motions, the analysis will specifically target interactions of microphysical processes with the large-scale dynamics.

A joint model experiment (MPLEX) documented a large spread of model results in simulations of a single-layer mixed-phase cloud during the Arctic fall. Models differed widely in simulated properties of a cloud layer formed over open ocean with large surface turbulent fluxes, cloud top temperatures around -15°C, and low aerosol number concentrations [Klein et al., 2009]. Liquid water path (LWP) and ice water path (IWP) from several cloud-resolving models were scattered across two orders of magnitude. An even wider range of results was obtained when single column models were included. Perhaps the most striking differences were seen in ice number concentration predicted by the models using available ice nucleation parameterizations.

In a follow-up intercomparison based on a case from the Surface Heat Budget of the Arctic Ocean (SHEBA) and First ISCCP Regional Experiment – Arctic Clouds Experiment (FIRE-ACE) ice particle number concentration was constrained uniformly across models [Morrison et al., 2011]. The cloud system consisted of a persistent mixed-phase cloud that

* Contact: Mikhail Ovchinnikov, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352. E-mail: mikhail@pnnl.gov

ASR STM, Arlington, VA, Tuesday, 13 March 2012, 7:30 – 9:00 PM
ISDAC LES intercomparison

Setup options

- Semi-idealized case based on ISDAC Flight 31.
- LES, 50-m horizontal and 10-m vertical grid size, 128x128x120+ domain.
- 8-hr simulations, liquid-only dynamics spin-up for 2 hrs.
- Elevated mixed-layer, temperature inversion above and slightly stable & moist layer below.
- Nudged horizontal wind profiles and temperature & moisture above the inversion.
ISDAC LES intercomparison

Setup options

Ice nucleation:
- Constrained IN / N_i concentrations (3 runs ICE0, ICE1, ICE4, for N_i=0,1,4 L$^{-1}$)
 \[
 \left(\frac{\partial N_i}{\partial t} \right) = \max \left(0, \frac{N_{i0} - N_i}{\Delta t} \right), \quad S_i \geq 0.05 \text{ AND } q_i \geq 0.001 \text{ g kg}^{-1}
 \]

Ice microphysics:
- Prescribed/parameterized ice properties for deposition & sedimentation
ISDAC LES intercomparison

Setup options

Parameterized radiation:

- Net longwave flux as a function of liquid water profile

\[
F(z) = F_0 \exp(-k[LWP(z_t) - LWP(z)]) + F_1 \exp(-kLWP(z))
\]

Parameter: \(F_0 (\text{W m}^{-2}) \), \(F_1 (\text{W m}^{-2}) \), \(k (\text{m}^2 \text{kg}^{-1}) \)

Value: 72 15 170

\[
LWP(z) = \int_0^z \rho(z')q_1(z')dz'
\]
ISDAC LES intercomparison

Preliminary results
(2 models x 3 runs)

DHARMA-2M:
• 3D, two-moment (modified Morrison) microphysics

SAM-SBM:
• 3D, size resolved (spectral bin) Microphysics

Runs: ICE0, ICE1, ICE4

Differences in ICE0 runs after the spinup
(initialization, dynamics, entrainment, turbulence, etc.)
Sensitivities to Ni are similar.
ISDAC LES intercomparison

Preliminary results

- Cloud top is relatively stable
- Mixed layer is deepening downward

Quasi-steady state IWP and precipitation
ISDAC LES intercomparison

Preliminary results

Effect of dynamics: stronger updrafts seem to support higher ice water content.
ISDAC LES intercomparison

Preliminary results

Effect of microphysics: Differences in precipitation between the models are smaller than in IWP. Different size distributions?
ISDAC LES intercomparison

Next steps

• Make adjustments to the setup and requested output statistics.
• Collect and analyze results from more models.
• Conduct more sensitivity runs with the different dynamics and/or microphysics within the same model(s).
• New deadline TBD: late spring – early summer.
• Polar Cloud Processes session at the 1st Pan-GASS Conference 10-14 Sept. 2012, Boulder, Colorado USA