Enhanced SOA formation from mixtures of biogenic and anthropogenic emissions during the CARES campaign.

J.E. Shilling1, R. Zaveri1, J. Fast1, C. Song1, L. Alexander2, M. Canagaratna3, J. Jayne3, E. Fortner3, A. Sedlacek4, S. Springston4, L. Kleinman4, A. Setyan5, Q. Zhang5.

1PNNL
2EMSL
3Aerodyne
4BNL
5UC Davis
Anthropogenically Enhanced SOA Formation

- SOA has correlates with anthropogenic tracers such as CO.
- 14C studies indicate most (40-80%) of the aerosol carbon is modern.
- Observed SOA levels cannot be explained by known chemistry.
- Implies an enhancement of biogenic SOA by anthropogenic emissions.
- Affects aerosol loading and therefore aerosol direct and indirect effects.

Carlen et al., ES&T, 2010, 44, 3376-3380
CARES Overview

- NW flow pattern transports the Sacramento plume into the valley and away from the biogenic sources in the foothills.

- SW flow pattern transports the plume into the foothills.

- Different meteorology allows us to investigate anthropogenic/biogenic interactions.

- G-1 flow 22 research flights to sample the plume

J.D. Fast et al., 2011
Overview of AMS particle measurements

- Fine particle mass is dominated by organics regardless of the meteorology.
- NW flow pattern generally produced low organic loadings.
- Extended periods of SW flow lead to elevated organic loadings.
Overview of AMS particle measurements

- Fine particle mass is dominated by organics regardless of the meteorology.

- NW flow pattern generally produced low organic loadings.

- Extended periods of SW flow lead to elevated organic loadings.
Case 1: SW flow pattern on June 28th: interaction of anthropogenics and biogenics.

- Sacramento plume transported to T1 in early afternoon.
- Bay area plume predominantly transported to the south.

For more information see J.D. Fast et al., ACP, 2012.
G-1 observations of urban plume evolution on June 28th.

- Urban plume transported to the foothills in the afternoon.
June 28th OA Formation in Mixed Plume

- Increase in organic mass correlates with loss of isoprene and its oxidation products.
- During the morning flight, organic mass increased 4 μg/m³ in 1.5 hours.
- Organic loading is reduced in afternoon relative to morning due to dilution.
 - Correcting for dilution suggests organic mass increased 6 μg/m³ over 6 hours (additional 2 μg/m³ from morning).
Plot of Organic loading vs CO supports additional OA productions in the afternoon.

- Morning is complicated due to simultaneous production and emissions
- Higher afternoon slope indicates OA production.
Case 2: Airmass impacted primarily by biogenic emissions on June 28th

- Urban plume remains in southern foothills.

Morning

Afternoon
June 28th: OA formation in Biogenic Airmass

- Though OA levels are significant, no net OA production was observed.

- Large concentrations of isoprene and its oxidation products are present.

- Significant ozone (60 - 80 ppbv) is present.
 - Sufficient OH should be available to oxidize VOCs.
OA vs CO in biogenic airmass on June 28th

- $\Delta OA/\Delta CO$ is zero, but there is little dynamic range in the measurement.
- OA and CO are near the background for the day.
Case 3: Airmass impacted primarily by anthropogenic emissions: June 12th

Sacramento plume transported to the south through regions with little biogenic emissions.

Morning

Afternoon

m/z 69 + 71
OA production in anthropogenically dominated airmass

- Airmasses influenced primarily by anthropogenic emissions showed lower OA production.
Summary of OA vs. CO plots as a function of meteorology

- SW flow pattern (biogenic/anthropogenic mix) produced more OA than NW flow pattern (anthropogenic).

![Graph showing the comparison of Organic Loading (μg/m³) vs. CO (ppbv) for different flow patterns.](image)
Summary of OA vs. CO plots as a function of meteorology

More OA is produced when anthropogenic and biogenic emissions mix.
Tracer binning of organic loading

- Tracer species percentiles are calculated and organic loading is binned based on levels of biogenic (m/z 69 + 71) and anthropogenic (CO) tracers.
 - Upper and lower quartiles define high and low, respectively.
- OA loading largest when both anthropogenic and biogenic tracers are elevated.
Conclusions

- Highest organic loadings were observed when both biogenic and anthropogenic tracers were elevated.

- Production of OA was enhanced by an unknown mechanism when biogenic and anthropogenic emissions mixed.

- Controlled laboratory studies will be key in determining the mechanism for the enhancement.

- Models must account for this process to constrain aerosol forcing and aerosol-cloud interactions.
 - Anthropogenic and biogenic emissions are in close proximity over wide regions of the world.
Acknowledgements

- **Funding:** The US DOE’s ARM Climate Research Facility and Atmospheric System Research Program.

- **G1 pilots:** B. Hannigan, B. Svancara, M Hubbell, D. Hone.

- **G1 mechanics:** G. Dukes, B. Svancara.

- **ACRF operations team:** B. Schmid, J. Hubbe, C. Kluzek, J. Comstock, J. Tomlinson.
Chemical composition of the plume

Comparison to literature spectra suggest organics are dominated by OOA (SOA).
No correlation between $\Delta OA/\Delta CO$ and aging of airmass on the timescale of the NO_x clock.
Intense plume dominated by organics is observed SE of city in morning.

Evidence of fast growth ~ 5 μg/m³ mass added in 1.5 hr.
Plume transported to the NE toward T1 in agreement with WRF predictions.

Plume evolution can be investigated.
June 28th Morning PTRMS

- Significant MVK/MACR and isoprene in plume
- Benzene/Toluene clock suggests plume age is 9 hours.
June 28th Afternoon PTR-MS

Concentration (ppbv)

- 33 (methanol)
- 59 (acetone)
- 61 (acetic acid)
- 107 (xylene)
- 93 (toluene)
- 79 (benzene)
- 69 (isoprene +?)
- 71 (MVK + MACR)
- 87 (MBO)

Local Time

3:30 PM 4:00 PM 4:30 PM 5:00 PM 5:30 PM
Our observations of the plume temporal evolution are consistent with chamber observations of SOA formation from isoprene.

- O:C and H:C ratios and evolution are consistent.
- Yields are not consistent.
Plot of Organic loading vs CO supports additional OA productions in the afternoon.

- Higher afternoon slope, suggests OA production.
- Slope of morning points flattens as m/z 69, 71 deplete and CO emissions continue.