The 1st Pan-GASS Meeting will take place 10-14 September 2012 in Boulder Colorado, USA. The meeting will focus on observing, understanding and modelling atmospheric physical processes. Topics will include:

- Progress in Representing Atmospheric Processes in Weather and Climate Models
- Stable Boundary Layers
- Radiation Modelling in Weather and Climate Models
- Land-Atmosphere Interactions
- High-Resolution Modeling, the Gray-Zone, and Stochastic Physics
- Boundary Layer Cloud Processes and Feedbacks (including CGILS)
- New Observations and Recent Field Campaigns
- Cloud Microphysics, Precipitation, and the Interactions of Clouds and Aerosols
- Polar Cloud Processes
- The Large-Scale Organization of Tropical Moist Convection.

The meeting will be held jointly with GEWEX Global Land/Atmosphere System Study (GLASS) Panel and the Madden-Julian Oscillation Task Force. Active projects will have specific break out sessions.
Cloud effects on aerosol: The challenges

- Clouds exert major influences on the physical, chemical and optical properties of aerosols.
 - A large fraction of aerosol mass (including possibly SOA) is produced in clouds via aqueous phase processes. Many of these processes are not well understood and represented in models.

- Clouds, via precipitation formation, are the primary sink for cloud condensation nuclei and a major sink of nucleation mode aerosol.
 - True even in environments with very low precipitation rates, e.g. marine stratocumulus. The effects on aerosols are not well quantified globally and obfuscate conclusions drawn from aerosol-cloud correlative studies.

- The presence of clouds makes it challenging to learn about aerosol properties via remote sensing.
 - Clouds exist in anomalously humid microenvironments and aerosol radiative properties close to them will differ from those at far-field. Poses challenges for interpretation of aerosol-cloud property correlations.
Mean precipitation rate (CloudSat, 2C-PRECIP-COLUMN, Stratocumulus regions)
What controls N_d?

- **Simple** budget model for CCN/N_d in the MBL:

$$\dot{N} = [\dot{N}]_{ent} + [\dot{N}]_{sfc} + [\dot{N}]_{coal}$$

$$N_{eq} = \frac{(N_{FT} + \beta U_{10}^{3.41})}{(1 + \frac{h k p_{CB}}{DZ_i})}$$

- Assume aerosol sources constant (here represented by FT concentration “buffer”)
- Model pattern almost entirely driven by precipitation sinks
- Can reproduce significant amount of variance in N_d over oceans \Rightarrow implications for significance of AOD vs r_e relations

Wood et al. (2011)
Cloud impacts on aerosol remote sensing

From MODIS: 60% of all clear sky pixels are located 5 km or less from all clouds.

From CALIPSO: 50% of all clear sky pixels are located 5 km or less from low clouds.
Cloud effects on aerosol: ASR Opportunities

• In-situ observations
 – state-of-the-art physicochemical aerosol measurement technology within ASR program to examine chemical and physical signatures of cloud processing
 – Airborne platforms, new CVI on G-1.

• Remote sensing
 – ARM remote sensing Facilities (e.g. new HSRLs) provide remote sensing data on the cloud-clear sky boundary at much higher spatial resolution than is typically available from space
 – Precipitation radars can help quantify aerosol loss rates in a variety of environments

• Modeling
 – Process scale modeling to examine aerosol processing rates in clouds (e.g. explicit microphysics LES coupled with chemistry)
 – WRF-Chem, CAM, and MMF models for regional and global assessment
Presentations

- **Hugh Morrison** – *Case #1 of the 8th WMO Cloud Modeling Workshop: CCN processing by a drizzling stratocumulus* (on behalf of Wojciech Grabowski and Lulin Xue)
- **Bruce Albrecht** – *Analysis of 2010 CIRPAS Twin Otter flights from Barbados to study clean air at cloud edges*
- **Mikhail Ovchinnikov** – *Modeling aerosol processing by clouds: goals, approaches, and challenges* (Ovchinnikov and Easter)
- **Larry Berg** – *TBD.*
- **Larry Berg** – *Aerosol and Cloud Predictions in WRF-Chem During VOCALS-REx* (paper by Qing Yang et al.)
- **Rob Wood** – *CALIPSO observations on aerosol properties near clouds* (on Behalf of Alexander Marshak)
- **Alexander Khain** – *Role of in-cloud nucleation on cloud microstructure*