Cloud Effects on Aerosols Breakout

GASS Geve Global Atmospheric System Studies

1st Pan-GASS Conference

10-14 September 2012 Boulder, Colorado, USA

Home

About GEWEX

Organization	The 1st Pan-GASS Meeting will take place 10-14 September 2012 in Boulder Colorado, USA. The meeting will focus on observing, understanding and modelling atmospheric physical processes. Topics will include:
News	 Progress in Representing Atmospheric Processes in Weather and Climate Models Stable Boundary Layers Radiation Modelling in Weather and Climate Models Land-Atmosphere Interactions High-Resolution Modeling, the Gray-Zone, and Stochastic Physics Boundary Layer Cloud Processes and Feedbacks (including CGILS) New Observations and Recent Field Campaigns Cloud Microphysics, Precipitation, and the Interactions of Clouds and Aerosols Polar Cloud Processes The Large-Scale Organization of Tropical Moist Convection.
Calendar	
Projects	
Publications	
Data Sets	
Contact	
Related Resources	The meeting will be held jointly with GEWEX <u>Global Land/Atmosphere System Study (GLASS) Panel</u> and the <u>Madden-Julian Oscillation Task Force</u> . Active projects will have specific break out sessions.
Search	

Cloud effects on aerosol: The challenges

- Clouds exert major influences on the physical, chemical and optical properties of aerosols.
 - a large fraction of aerosol mass (including possibly SOA) is produced in clouds via aqueous phase processes. Many of these processes are not well understood and represented in models.
- Clouds, via precipitation formation, are the primary sink for cloud condensation nuclei and a major sink of nucleation mode aerosol
 - true even in environments with very low precipitation rates, e.g. marine stratocumulus. The effects on aerosols are not well quantified globally and obfuscate conclusions drawn from aerosol-cloud correlative studies
- The presence of clouds makes it challenging to learn about aerosol properties via remote sensing
 - clouds exist in anomalously humid microenvironments and aerosol radiative properties close to them will differ from those at far-field. Poses challenges for interpretation of aerosol-cloud property correlations.

Mean precipitation rate (CloudSat, 2C-PRECIP-COLUMN, Stratocumulus regions)

What controls N_d ?

• <u>Simple</u> budget model for CCN/N_d in the MBL:

$$\dot{N} = \left[\dot{N}\right]_{ent} + \left[\dot{N}\right]_{sfc} + \left[\dot{N}\right]_{coal}$$
$$N_{eq} = \frac{\left(N_{FT} + \frac{\beta U_{10}^{3.41}}{Dz_i}\right)}{\left(1 + \frac{hkP_{CB}}{Dz_i}\right)}$$

- Assume aerosol sources constant (here represented by FT concentration "buffer")
- Model pattern almost entirely driven by precipitation sinks
- Can reproduce significant amount of variance in N_d over oceans \Rightarrow implications for significance of AOD vs r_e relation ships

Wood et al. (2011)

Cloud impacts on aerosol remote sensing

Rearafir bonc booudd s

Distance to nearest cloud (km)

from **MODIS**: 60% of all clear sky pixels are located 5 km or less from all clouds

from **CALIPSO**: 50% of all clear sky pixels are located 5 km or less from low clouds

Cloud effects on aerosol: ASR Opportunities

- In-situ observations
 - state-of-the-art physicochemical aerosol measurement technology within ASR program to examine chemical and physical signatures of cloud processing
 - Airborne platforms, new CVI on G-1.
- Remote sensing
 - ARM remote sensing Facilities (e.g. new HSRLs) provide remote sensing data on the cloud-clear sky boundary at much higher spatial resolution than is typically available from space
 - Precipitation radars can help quantify aerosol loss rates in a variety of environments
- Modeling
 - Process scale modeling to examine aerosol processing rates in clouds (e.g. explicit microphysics LES coupled with chemistry)
 - WRF-Chem, CAM, and MMF models for regional and global assessment

Presentations

- Hugh Morrison Case #1 of the 8th WMO Cloud Modeling Workshop: CCN processing by a drizzling stratocumulus (on behalf of Wojciech Grabowski and Lulin Xue)
- **Bruce Albrecht** Analysis of 2010 CIRPAS Twin Otter flights from Barbados to study clean air at cloud edges
- Mikhail Ovchinnikov Modeling aerosol processing by clouds: goals, approaches, and challenges (Ovchinnikov and Easter)
- Larry Berg *TBD*.
- Larry Berg Aerosol and Cloud Predictions in WRF-Chem During VOCALS-REx (paper by Qing Yang et al.)
- Rob Wood CALIPSO observations on aerosol properties near clouds (on Behalf of Alexander Marshak)
- Alexander Khain Role of in-cloud nucleation on cloud microstructure