Modeling aerosols and their interactions with shallow cumuli
during the 2007 CHAPS field study

Received 4 June 2012; revised 16 November 2012; accepted 26 November 2012.

Acknowledgements
Personnel: Operation and processing of G1 aircraft data during CHAPS, 2007
U.S. DOE Atmospheric Science Research (ASR) program at PNNL
Effect of aerosols on clouds: large uncertainty in 3D models
Previous studies focused on stratiform or deep convective clouds
Short-lived shallow cumuli common in North America and many places in the world
Sub-grid scale processes difficult to simulate using coarse grid regional models

Cumulus Humilis Aerosol Processing Study (CHAPS), Oklahoma City
- June 2007
- Moderately sized city (represents several cities in North America)
G-1 aircraft instrumentation

- Two inlets
 - Cloud droplets sampled by Counter Flow Virtual Impactor (CVI)
 - Aerosols ($D_p < 2\mu m$) sampled by Isokinetic inlet
- Nearly identical instrumentation on each inlet
- Detailed size and composition
 - PCASP & CAPS probes, SMPS, FIMS - particle and cloud droplet size distributions
 - Nephelometer, PSAP - particle optical properties
 - DMT CCN counter
 - AMS - Aerosol chemical composition
- Trace gases: CO
- Flight pattern:
 - In and out of plume
 - Below, within, and above the cloud layer
WRF-Chem configuration

- Simulation: 18-25 June 2007
- Model physics:
 - 10 km outer and 2 km nested domain
 - Nested domain: 242×242 km around Oklahoma City
 - Morrison 2-moment microphysics
 - Kain-Fritsch (new Eta) cumulus scheme on 10 km outer domain
- Emissions and chemistry:
 - EPA NEI 2005 emissions inventory
 - SAPRC-99 gas chemistry
 - MOSAIC for inorganic aerosols
 - 2-species VBS → Anthropogenic SOA (Shrivastava et al. 2011)
 - MEGAN for biogenic emissions & literature biogenic SOA yields
Organic aerosol (OA) below clouds on 25th June

WRF-Chem qualitatively simulates non-refractory aerosols and trace gases reasonably well within the Oklahoma City plume.

- E.g. OA concentrations simulated by WRF-Chem agree with AMS measurements.
Aerosol optical property simulations

- Simulations assume internal mixture and volume weighted mixing rule for optical calculations

- Uncertainties:
 - Aerosol water content
 - High ambient relative humidity (~80%) during CHAPS → aerosols may retain significant water (sampled at 40% RH)
 - Simulations: Refractory other inorganics (OIN) large contribution to fine aerosols
 - OIN: crustal, dust, or other unspecified sources (e.g. off-road diesel engines), not measured
 - Size distribution, hygroscopicity and complex refractive index of OIN unknown
Aerosol optical properties in clear sky below clouds

Along aircraft flight: 25th June 2007

Absorption increases and SSA decreases within plumes
WRF-Chem simulations reproduce this trend qualitatively
Results sensitive to aerosol water, OIN content and complex refractive index of OIN

→ need to characterize fine aerosol OIN content and properties
Cloud processing changes aerosol chemical composition: Nitrate

Observations show large enhancement in nitrate content of cloud droplet residuals

- Consistent with previous studies (Sellegri et al. 2003; Hayden et al. 2008)
- Model reproduces the large enhancement of nitrate in cloud drops
- Uptake of HNO₃ vapor on cloud droplets causes this nitrate enhancement
Aerosol effects on clouds: Effects of vertical velocity and pollutant loading

Both vertical velocity and pollutant loading affect cloud properties.

- Box → effect of pollutant loading (CO’) for a narrow range of vertical velocity

Similar to Berg et al. 2011

\[\text{CO'} = \text{CO} - \text{CO_{bkg}} \]
Simulations clearly indicate first aerosol indirect effect

- CDNC increases and r_{eff} decreases with increase in pollutant loading
- First Aerosol Indirect Effect consistent with observations (Berg et al. 2011)
Conclusions

- Below cloud optical simulations show increase in light absorption and decrease in SSA within the Oklahoma City plumes as observed.
- Need to routinely measure other inorganic (refractory) part of fine aerosols in addition to non-refractory components.
- Impact of clouds on aerosols:
 - Cloud chemistry changes aerosol composition.
 - Cloud droplets show enhanced nitrate due to uptake of HNO₃ vapor consistent with other studies in different cloud types and air masses.
- Impact of aerosols on clouds:
 - Simulations clearly show First Aerosol Indirect Effect consistent with analysis of observations during CHAPS.
 - Even moderately sized Oklahoma city has measurable impacts on cloud microphysics, and aerosol optical properties.
- WRF-Chem with 2 km grid spacing captures key relationships between aerosol processes and cloud microphysical properties.
Future work

- Coupled cloud-aerosol meteorology simulations at high resolution (small grid spacing) already computationally expensive

- New shallow cumulus parameterization shown to better simulate sub-grid scale shallow cumuli at coarser grid resolution (Berg et al. 2013)

- Ongoing work: coupling aerosols, chemistry and the revised SOA scheme using VBS to the new KF-CUP cumulus parameterization

- Evaluating aerosol-cloud interactions in coarse grid models
Satellite reflectivity (grayscale) vs. simulated cloud fraction (colorbar)