Aerosol effects on cloud field properties and precipitation of tropical convective clouds

Seoung-Soo Lee^{1,2} and Graham Feingold¹

¹ NOAA Earth System Research Laboratory ² CIRES, University of Colorado, Boulder

Introduction

The effect of aerosol on deep convective clouds is poorly understood

Aerosol is thought to invigorate deep convective clouds (e.g., Koren et al. 2005; Rosenfeld et al. 2008; Li et al. 2012) but distinct changes in *total* precipitation have not been demonstrated

There must have been microphysical compensation processes, considering the well-proven aerosol-induced autoconversion suppression (e.g, Lee et al., 2011)

Compensation may affect the spatial/temporal distribution of precipitation

- Consider aerosol-cloud interactions for a cloud system over days
- Explore aerosol-induced changes in organization and precipitation in a cloud system comprising multiple clouds

Model Description

Soddard Cumulus Ensemble (GCE) model coupled with double-moment microphysics (Saleeby and Cotton, 2004)

Interactive aerosol

Case

• A mesoscale system of deep convective clouds (reaching the tropopause)

- Based on observations during TWP-ICE Darwin, Australia (Fridlind, 2009)
- Two-day simulations (most convective period)

• Conditions as prescribed by GCSS TWP-ICE case study

Simulations

2-D domain: 256 x 20 km² $\Delta x = 500 \text{ m and } \Delta z = 200 \text{ m}$

PBL aerosol number concentration:
Control run : ~ 400 cm⁻³ (Control)
High-aerosol run: ~ 4000 cm⁻³ (High Aerosol)

Small Differences in Total Precipitation

Significant Increase in Updraft Mass Flux

Cloud Response to an Increase in Aerosol

Precipitation Budget (High - Control)

 $\triangle Precipitation \approx \triangle Autoconversion + -21.08 mm$

△Accretion of cloud liquid 23.91 mm

Distinct Differences in Cloud Field Properties

Distinct Differences in WP Spatial Distribution

At the time of the maximum difference in WP homogeneity

Correlation between Precipitation and WP Frequency

Evolution of the Differences in WP Frequency

WP (g m^{-2}) frequency

Discussions and Conclusions

- For 2-day TWP-ICE simulations a 10-fold aerosol perturbation has a small effect on total precipitation (+9%)
- Substantial aerosol-induced enhancement in updrafts and cloud mass
- This enhancement accompanies significant changes in cloud field properties
 - Increase in WP homogeneity and in high and low WP; decrease in moderate WP
 - Increase in light and heavy rain; decrease in moderate rain
 - Increase in cloud population
- A meteorologically constrained cloud system achieves the approximately same amount of integrated precipitation

Substantial Offset of Aerosol-Induced Change in Solar Radiative Fluxes by That in Longwave Fluxes

Liquid + ice water content (g m^{-3})

Distinct Differences in Cloud Field Properties

Condensation/evaporation rates and wind flow

Precipitation Frequency

Discussions and Conclusions (I)

- For 2-day TWP-ICE simulations a 10-fold aerosol perturbation has a small effect on total precipitation (+9%)
- More significant changes to cloud system organization and the frequency distribution of rain rates
 - High aerosol simulations have larger number of small clouds (delayed autoconversion, more evaporation, stronger gustiness)
 - •Aerosol-enhanced evaporation creates smaller clouds with lower rainrates
 - Aerosol-induced increase in freezing causes intermittent heavy precipitation, however, its impact on cloud-system organization is negligible
- We stress the importance of considering aerosol-precipitation interactions in cloud systems of long duration

- For 2-day TWP-ICE simulations a 10-fold aerosol perturbation has a small effect on total precipitation (+9%)
- Substantial aerosol-induced enhancement in updrafts and cloud mass
- This enhancement accompanies significant changes in cloud field properties
 - Increase in WP homogeneity and in high and low WP; decrease in moderate WP
 - Increase in light and heavy rain; decrease in moderate rain
 - Increase in cloud population
- A meteorologically constrained cloud system achieves the approximately same amount of integrated precipitation
- By-products of this system's effort for the achievement are substantial changes in updrafts, cloud mass and cloud field properties