Relationships between DSD Parameters Observed in MC3E Observations

Christopher R. Williams

Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado Boulder

Active Members of the NASA GPM DSD Working Group:

V.N Bringi, Larry Carey, Brenda Dolan, Ziad Haddad, Patrick Gatlin, Liang Liao, Robert Meneghini, Joe Munchak, Steve Nesbitt, Walt Petersen, Simone Tanelli, Ali Tokay, Anna Wilson, and David Wolff

> This work supported by the NASA Precipitation Measurement Mission (PMM) Grant NNX10AM54G

NASA GPM DSD Working Group: Bridging Algorithms and Ground Validation (GV)

With guidance from Algorithm Developers, we are using previously collected GV data (point, columnar, and spatial GV data sets) to address these objectives:

DSD Working Group Monthly Teleconference calls: 3rd Thursday @ 1 PM Eastern.

Difficult to estimate μ and D_m from individual N(D) spectra because μ and D_m are correlated (Chandrasekar & Bringi 1989)

Frequency of Occurrence

- Observed $\sigma_m \& D_m$
- No assumed DSD Shape
- Count is in dB
 - pixel with most counts = 0 dB
 - each -3 dB is half as many counts

If we assume a gamma shape DSD, there is a relationship between $\sigma_m - D_m - \mu$ (Assume the $D_{max} = \infty$)

1. Can estimate σ_m from D_m and μ

$$\sigma_m^2 = \frac{D_m^2}{\mu + 4}$$

2. Can estimate μ from D_m and σ_m

$$\mu = \frac{D_m^2}{\sigma_m^2} - 4$$

Darwin Profiler Retrieved DSDs σ_m vs. D_m for all pixels Zhang et al. (2001) μ - Λ Relationship

Huntsville:, 20,954 samples $\sigma_m = 0.29 D_m^{1.43}$

MC3E: 5,175 samples $\sigma_m = 0.30 D_m^{1.33}$

GCPEx: 2,218 samples $\sigma_m = 0.31 D_m^{1.45}$

LPVEx: 2,454 samples $\sigma_m = 0.27 D_m^{1.53}$

Ensemble: 29,555 samples $\sigma_m = 0.29 D_m^{1.42}$

Adaptive Power-law Constraints for $\sigma_m - D_m$ and $\mu - D_m$

Observed *b* ranged from 1.33 to 1.53.

By setting b = 1.5, $constraint \sigma_m = a_{\sigma_y} D_m^{1.5}$

- Constraint is only a function of a_{σ_y} - $\mu - D_m$ constraint has a simple form: $constraint \ \mu = \frac{1}{a_{\sigma_y}^2 D_m} - 4$

Change a_{σ_y} to get a different constraint. $_{constraint}\sigma_m = 0.35D_m^{1.5} \Rightarrow \overline{\sigma_y} + std(\sigma_y)$

 $constraint \sigma_m = 0.29 D_m^{1.5} \Rightarrow \overline{\sigma_y}$ (best fit)

 $constraint\sigma_m = 0.23 D_m^{1.5} \Rightarrow \overline{\sigma_y} - std(\sigma_y)$

Discussion Points

The power-law relationship appears to be robust for rain observed at different locations.

The calculation of D_m and σ_m Sm can be calculated for all raindrop distributions without assuming a shape of the distribution.

But this relationship raises many questions:

- How does rain regime determine the power-law coefficients?
- Or, does rain regime just move the observation around the 2-d $D_m \sigma_m$ distribution?
- Do cloud droplet distributions have similar $D_m \sigma_m$ power-law relationships?
 - Is there a temperature dependence?
- Are $D_m \sigma_m$ power-law relationships a way to identify mixed phase clouds in ARM data?
- What are the 2-d distributions of D_m and σ_m in cloud resolving models?
- Do 1-, 2-moment and bin microphysics modules capture $D_m \sigma_m$ statistics?

These questions can be answered through collaboration between observational and model scientists.

Concluding Remarks (1/2)

Develop physically based relationships between DSD parameters

- NASA GPM DSD Working Group is investigating relationships between DSD parameters to address assumptions used in retrieval algorithms.
- $\sigma_m \sim D_m^{1.5}$ relationship appears robust & observed in several field campaigns.
- Defined an adaptive constraint with one parameter: $\mu = \frac{1}{a_{\sigma_y}^2 D_m} 4$
- Williams et al, 2013: Adaptive Raindrop Size Distribution Constraint for Probabilistic Rainfall Retrieval Algorithms, *submitted to J. Appl. Meteor. Climatol.*

Develop a framework to incorporate GV findings into Algorithms

- Divide Algorithm "Look-up Tables" into Scattering and Integral Tables.
- Scattering Tables describe the electromagnetic properties of particles
- Integral Tables describe particle size distributions

Benefits of dividing Look-up Tables into Scattering and Integral Tables:

- 1. Researchers can work independently Developing scattering tables is independent of investigating particle size distributions.
- 2. Provides a framework to incorporate GV findings into Look-up Tables used by satellite algorithms.
- 3. Provides a communication framework for particle scattering modelers, observational scientists, and algorithm developers.