Satellite measurements of CCN using clouds as CCN chambers

Daniel Rosenfeld, The Hebrew University of Jerusalem
CCN chambers measure the number of activated CCN (N_a) for a given super-saturation (S).

Measuring N_a and S in clouds can provide $CCN(S)$:

It will be shown here that both N_a and S can be retrieved from high resolution (375 m) NPP/VIIRS satellite data, and validated against the SGP measurements.

Having both $CCN(S)$ and W_b provides us with the possibility to separate aerosol from meteorology effects on cloud radiative effects.
1. \(N_a \) is retrieved from the \(T-r_e \) (cloud top temperature – drop effective radius), due to nearly inhomogeneous cloud mixing, resulting in nearly adiabatic \(r_e \).
2. S is calculated from the knowledge of N_a and W_b (Cloud base updraft). $S = C(T, P)W_b^{3/4}N_a^{-1/2}$

W_b is retrieved from SGP radar;

N_a calculation is based on calculated adiabatic water (LWC_a) vs. Satellite retrieved assumed-adiabatic r_e.

LWC_a is based on radiosonde and ceilometer retrieved cloud base temperature (T_b).

CCN(S) is validated against SGP measured AOS and TDMA.
Satellite-only CCN(S) requires retrieving T_b and W_b

Validation of VIIRS retrieved cloud base temperature ($^\circ$C) against SGP cielometer and sounding based measurements.

$y = 0.21 + 0.98x \quad R^2 = 0.92$

T_b RMS error = 1.1 °C

Zhu Y., D. Rosenfeld et al., GRL 2014
Satellite-only CCN(S) requires retrieving T_b and W_b

\[W_b = \sum \frac{N_i W_i^2}{N_i W_i} |W_i > 0 \]

N_i stands for the frequency of occurrence of W_i.

DeltaT: Temperature difference between cloud base and cloud top.

T_s: surface skin temp.

T_a: 2-m air temperature

V: surface wind speed

WS: vertical wind shear

H_{cb}: cloud base height

NPP Satellite retrieved cloud base updraft, W_b

PhD of Youtong Zheng at the Hebrew University
Validation of Satellite-only CCN(S)

These are all the cases for which full validation data are available so far during times of convective clouds and NPP/VIIRS overpass at a viewing angle of nearly solar back scatter.
Conclusions and next steps

• We have proved the concept of retrieving \textbf{CCN(S)} by using clouds as CCN chambers.
• Other important results are the satellite retrievals of:
 – Convective cloud base drop concentrations, N_a.
 – Cloud base temperature, T_b, which allows the calculation of boundary layer vapor mixing ratio.
 – Cloud base updraft, W_b, based on satellite retrieved surface skin and air temperatures.
• Next, this has to be expanded to other areas.
• Eventually to be applied to the ultimate goal of disentangling the updraft from aerosol effects on cloud radiative effects.