Retrieving 3D cloud microphysical properties over the Azores using scanning radar and zenith radiances

Mark Fielding
Robin Hogan, Christine Chiu and Graham Feingold
Why do we need 3D observations of warm low clouds?

• Clouds are rarely stratiform

• ‘Soda straw’ view is limited

• Cloud structure affects radiative transfer

• Help provide observational constraints for realistic cloud and radiation parameterizations in global circulation models.
Using SACRs to observe clouds in 3D

- **Problem 1:** What is the best way to scan?

Scanning cloud radar
Problem 1: Optimise scanning strategy for 3D clouds

1. **PPI (Plan Position Indicator)**
 - Maximises time in BL
 - Captures cloud evolution
 - ‘Cone of silence’

2. **CWRHI (Cross Wind RHI)**
 - Frequent visits to zenith
 - Minimizes sensitivity errors
 - Requires frozen turbulence hypothesis

3. **Sydney Opera House (SOHO)**
 - Best of both?
 - Use in low wind conditions?

Fielding et al. 2013 (JGR)
Problem 1: Optimise scanning strategy for 3D clouds

Radar sensitivity gives greatest error in reconstructions
Using SACRs to observe clouds in 3D

- **Problem 1**: What is the best way to scan?
 - **Solution**: Use CWRHI for cloud field snapshot

- **Problem 2**: SACR provides cloud structure, but droplet size/LWC not constrained
 - **Solution**: Synergy with zenith spectral radiances
Zenith radiances mainly constrained by overhead cloud properties -> two step approach
Method – Step 1 (Retrieve within ‘Supercolumn’)

- Use iterative Ensemble Kalman Filter as an optimal estimation framework to retrieve cloud properties – full error statistics
- Use 3D radiative transfer as a radiance forward model
- Assume monomodal lognormal droplet distribution
Method – Step 2 (Reflectivity matching)

- Similar to Barker et al. 2011, match columns of radar reflectivity outside the supercolumn (recipients) to columns inside supercolumn (donors).
- Assign donor column’s number concentration to recipient column.
Case study
Azores, 21st Nov 2009

W-band scanning cloud radar
Radiances at 673, 870 nm
Example (1) SCu

Effective radius

Radiance track

LWP

Effective radius (μm)

LWP (g m⁻²)
Example (1) SCu

Microwave radiometer retrieval
RMSD ~20 g m\(^{-2}\)

Radiance track

2NFOV radiance-only retrieval
RMSD ~6
Example (2) - Cu

Effective radius
Example (2) - Cu

Limit of radar sensitivity

Microwave radiometer retrieval is negative

2NFOV retrieval only physical for larger Cu clouds
Summary

- New method to provide 3D cloud fields in overcast and broken-cloud – key step to understand 3D effects
- Verified using LES shallow cumulus (see poster)
- Good agreement with independent LWP in stratocumulus case
- Flexible ensemble optimal estimation framework