Evaluating a model of mixed-phase cloud processes using radar Doppler spectra

Guo Yu

J. Verlinde, E.E. Clothiaux
A. Avramov, A. S. Ackerman, and A. M. Fridlind
Methodology

• Data (ISDAC - 8 April 2008 Golden case)
 – KAZR spectra
 – Model: DHARMA
 • Size resolved bin microphysics (drops, dendrites, aggregates): mass and fall speeds
 • Vertical velocity: mean and variance
 – Doppler spectrum simulator
 • Liquid/dendrites: small particle scattering theory
 • Aggregates: Generalize Multi-particle Mie (Botta et al.)
 • Adjusted for model/radar volume differences

– Processing
 • Reflectivity (dBZ)
 • Volume-mean air velocity (w_{est})
 • Volume-mean Doppler velocity (V_D)
 • Hydrometeor fall speed (V_{fs})
– Compare in-cloud histograms
 • One slice through model
 • One hour of KAZR data
Vertical velocity comparisons

- Velocity offset (a) depends on sub-volume turbulence and LWC
 - Model resolved -0.02 m s^{-1}
 - Model retrieved 0.17 m s^{-1} (bias expected)
 - Radar retrieved 0.40 m s^{-1}
- Model underestimation may be caused by
 - Underestimation of broadening (model)
 - Underestimation of LWC (model)
 - Shear across volume
 - Radar processor artifact
Radar moment comparisons

- Two simulations: high- and low density ice (dendrite & aggregates)
 - Low density:
 - Match precipitation dBZ
 - Cloud top dBZ high
 - Match V_D
 - Spectrum width too small
 - V_{fs} too small
 - High density:
 - Precipitation dBZ low
 - Cloud top dBZ high
 - Match V_D
 - Spectrum width too small
 - V_{fs} too small
 - Broadening?
 - Reflectivity weighting?
Turbulence:

\[\sigma^2 = \sigma_w^2 + \sigma_s^2 + \sigma_d^2 + \sigma_B^2 \]

- Beamwidth (\(\sigma_B\)) no issue (narrow beam)
- Sub-volume turbulence width (\(\sigma_w\)) comparison OK (Shupe et al 2008)
- Discrepancy from
 - Shear (\(\sigma_s\)) [dynamical broadening]
 - PSD width (\(\sigma_d\)) [microphysical broadening]
- Microphysical broadening
 - No impact on air motion (also underestimated)
- Dynamical broadening
 - No good observations of vertical air motion
 - Increase (\(\sigma_s\)) by factor of three
 - Much better model/radar match
 - No physical basis: model physically consistent
Final comparisons

- With artificial dynamical broadening
 - Spectrum width comparison better
 - Mean fall speeds closer, but distribution off
 - PSD offsets? Reflectivity weighting offsets?

- What have we learned?
 - Using radars to evaluate models is deceptively easy
 - Must represent model ice characteristics in scattering model consistently
 (Must treat radar backscatter cross sections with care)
 - Must characterize ice better in observations (size, aspect ratio, mass, ice mass distribution in ice crystal)