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Goal 

Observational constraints on the Cloud Radiative 
Effect (CRE) / Aerosol Indirect Effect (AIE)
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Approaches to quantifying ���
Aerosol-Cloud Interactions (ACI)
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Bottom-up

Quantifying these terms���
 is a challenge
-  Measurement errors, 

scale dependence, etc.
Small differences in ACI���
  magnify to very large���
  differences in CRE 

à measurements of 
microphysical ACI metrics 
do not constrain the CRE!
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Drop N, size

Top-down

Ac = f(L, N)

Cloud field Properties
Cloud fraction, fc
Liquid water path, L
Optical depth, τ
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MODIS, 
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Ac = f(L, N)

Cloud field Properties
Cloud fraction, fc
Liquid water path, L
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Cloud depth, H
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A = Acfc +Aclr(1� fc)

Fsw = downwelling 
shortwave flux

rCRE= relative cloud radiative effect

Approaches to quantifying ���
Aerosol-Cloud Interactions (ACI)
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Approaches to quantifying ACI in cloud systems

Ackerman et al. (2000)

Ghan et al. (PNAS 2016)
!

etc..

Caution!!
Uncertainties 
compound

Chen et al. (2014)
Goren and Rosenfeld 
(2014)

Feingold et al. (1997)
Liu and Daum (2000)

Albedo Emissions
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Demonstration of Difference Between 
Approaches

Example from LES
Two sets of simulations (~100 each) 
differing only in co-variability of initial meteorology and 
aerosol conditions:

Set 1:  regular grid spacings in 6-D parameter space; many runs vary 
          N for fixed met conditions
Set 2: Latin Hypercube Sampling of 6-D parameter space; maximizes 
         minimum distance between parameters for optimal coverage 

Neither is realistic but differences will be 
illuminating



Microphysical Response (bottom-up)

Set 1 Set 2

 Both Sets show expected reduction in re with increasing Na 
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- Aerosol influence is detectable 
  but relatively weak
- Shape affected by definition of fc

Set 1

Steep rise as fc à 1

Cloud fraction
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Feingold, McComiskey, Yamaguchi et al., 2016 PNAS

Albedo-fc Response (top-down)

Remote sensing line 
Engstrom (2015)



Remote sensing line 
Engstrom (2015)

To
ta

l s
ce

ne
 a

lb
ed

o

- Aerosol influence is detectable 
  but relatively weak
- Shape affected by definition of fc
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Albedo-fc Response (top-down)

τc> 0.1  τc> 0.2  



Co-variability of inputs influences ���
- detectability of aerosol effects!
- shape of A, fc relationship

Aerosol effect is imperceptible

Cloud fraction
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Albedo-fc Response (top-down)

Set 2

Feingold, McComiskey, Yamaguchi et al., 2016 PNAS
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LES (statistics)
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e.g., LASSO; Neggers 2012, Schalkwijk 2015; Cabauw
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Observations: 14 years of warm clouds at SGP Continental US 

Correlation between rCRE and Aerosol Index Correlation between rCRE and L

R = 0.54 
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rCRE ⇡ Ac ⇥ fc

A = Acfc +Aclr(1� fc)

Fsw = downwelling 
shortwave flux

Sena et al., 2016
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Observations: 12 years of warm clouds at SGP
Continental US (McComiskey and Long, to be submitted)
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LES/CRM Modeling
Ocean

Observations: 12 years of warm clouds at SGP
Continental US (McComiskey and Long, to be submitted)
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LES/CRM Modeling
Ocean

Observations: 12 years of warm clouds at SGP
Continental US (McComiskey and Long, to be submitted)
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Constraining dL/dN
 

Can So or Spop be used to constrain dL/dNS
o

= � dlnR

dlnN

S
pop

= �dlnPOP
dlnN

Z
LWC(t)dt

� =
dlnL

dlnN

1

Af = Albedo enhancement 
factor due to λ
(enhancement over Twomey albedo 
effect)

Wang et al. 2012 
(climate modeling)

Large Eddy Simulation (Stratocumulus)

Lebo and Feingold ACP 2014

λ  is positive; albedo is enhanced

Quantitative differences from GCM

Dependence on R threshold
(not shown)
      



Constraining dL/dN
 

Wang et al. 2012 
(climate modeling)

Large Eddy Simulation (Cumulus)

Wang et al. 2012 
(climate modeling)

Symbol types represent 
different R thresholds for POP

λ becomes negative for large enough aerosol perturbations

Lebo and Feingold ACP 2014



Summary
Observational constraints on Cloud Radiative     
Effect (CRE)
•  Top-down vs. bottom-up approach

– More focus on macroscale parameters tightly linked to 
radiation (CRE, A, fc, L) 

•  Link CRE, A, fc plots to:
– microphysics, cloud field properties, scale, place
–  co-variability in controlling parameters 

Goal 2: Does co-variability between aerosol and    
    meteorology affect detectability of ACI? YES

•  Embrace the co-variability!
•  Routine process modeling and observations will capture 

this co-variability (Cabauw, SGP, HDCP2)
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Cumulative Multivariate Correlation: Set 1

All variables contribute to the Albedo



Albedo Susceptibility

Set 1 Set 2

 Both Sets show expected steeper slopes at small N and Ac ~ 0.5
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 - Aerosol influence is detectable 
  but relatively weak
- Averaging scale matters

Set 1

3-D RTM on���
4 snapshots: 
Sebastian Schmidt

Cloud fraction

Two definitions 
of cloud fraction
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Feingold et al., 2015, in press PNAS


