Latent Heating, Microphysical and Aerosol Processes of MC3E Mesoscale Convective Systems

Susan C. van den Heever

Peter J. Marinescu, Stephen M. Saleeby, Paul J. DeMott, and Sonia M. Kreidenweis

Department of Atmospheric Science Colorado State University

2016 ARM/ASR Joint User Facility and PI Meeting

Research Funded by DOE Award # DE-SC0010569 Center for Multiscale Modeling of Atmospheric Processes

Image from http://www2.mmm.ucar.edu/imagearchive/

MC3E Field Campaign

- Midlatitude Continental Convective Clouds Experiment (Jensen et al., in press)
 - Better understand convective cloud processes and lifetimes and how to improve the representation of these processes in models
 - Led by the DOE and NASA
 - April-May 2011
 - Southern Great Plains region

Overview

MC3E data used to study 4 aspects of aerosol and microphysical processes within mesoscale convective systems (MCSs)

- 1) Understanding the aerosol environment during MC3E and developing model representations of aerosols
- 2) Assessing the microphysical contributions to and evolution of latent heating within MCSs
- 3) Quantifying aerosol effects on MCS microphysical development and anvil characteristics
- 4) Determining the impacts of vertical variations in CCN on MCS precipitation for these cases

Aerosol Particle Characterization in the Southern Great Plains

Yucatan Peninsula Biomass Burning: http://www.firelab.org/project/biomass-burning-mexico

SGP Aerosol Frequently Impacted by Smoke

Local burning dominated during April, while transport of biomass burning aerosol from Mexico and Central America were more evident in May

MODIS Fire Counts

850 mb Winds

Organic Aerosol Concentrations in the Great Plains

Big Bend

5/4

5/11

5/18

5/25

25

20

15

10

5

0

3/30

4/6

4/13

4/20

4/27

Day in 2011

organic carbon aerosol concentration (μg m^{·3})

- Peak organic aerosol concentrations in April dominated by local sources
- Periodic events in May representative of biomass burning events

"Background" and Smoke Aerosol

Derived CCN spectrum

N = 2000 cm⁻³ $D_g = 120 \text{ nm}$ $\sigma_g = 1.8$ $\epsilon = 0.2$ (or, $\kappa = 0.15$)

Smoke Concentrations (µg m⁻³)

From the Navy Aerosol Analysis and Prediction System (NAAPS Model): May 20 2011 00Z

NAAPS USED TO LINK SURFACE TO VERTICAL LAYERS

Also matched total aerosol mass and dry scattering coefficient

Simulations of MC3E MCS Events

Two MC3E MCS Events

- May 20 MCS
 - "Textbook" Leading
 Line, Trailing
 Stratiform MCS
- May 23-24 MCS
 - Asymmetric Leading
 Line Trailing
 Stratiform MCS

Simulations

• RAMS (Regional Atmospheric Modeling System)

(Cotton et al. 2003; Saleeby and van den Heever 2013)

- Version 6.1
- 2-moment bin-emulating bulk microphysics
- 8 hydrometeor types
- Aerosol parameterization scheme (Saleeby and van den Heever, 2013)
 - CCN and IN initializations based on observations during MC3E
- Harrington two-stream, hydrometeor-sensitive radiation scheme
- 3 nested grids
 - Grid 1: $\Delta x = \Delta y = 30$ km
 - Grid 2: $\Delta x = \Delta y = 6$ km
 - Grid 3: $\Delta x = \Delta y = 1.2$ km
 - 60 stretched vertical levels

Model-Observation Comparison

- RAMS simulations compared to observations during MC3E
 - Convective and stratiform areas, convective vertical velocities, radar reflectivity, and precipitation

Precipitation Comparison (Hovmöller)

 Total surface accumulated precipitation differences (RAMS-Obs):

May 20: -4%

May 23-24: +12%

- RAMS spatial and temporal evolution follow observations
- Low stratiform precipitation model bias

Observational data from Stage IV

The Evolution of Latent Heating within Midlatitude Continental MCSs

(Marinescu et al., 2016: In Review)

- MCS simulations partitioned into Convective, Stratiform and Anvil regions
- <u>Convective</u>: ~Linear decrease over time with constant shape

Stratiform: Profile shape evolves with time (flow regimes; i.e., front -to-rear ascending flow)

• <u>Anvil</u>:

Relatively small changes in latent heating profile

• MCS simulations partitioned into Convective, Stratiform and Anvil regions

• <u>Anvil</u>:

Relatively small changes in latent heating profile

• MCS simulations partitioned into Convective, Stratiform and Anvil regions

• <u>Anvil</u>:

Relatively small changes in latent heating profile

- MCS simulations partitioned into Convective, Stratiform and Anvil regions
- <u>Convective</u>: ~Linear decrease over time with constant shape

Stratiform: Profile shape evolves with time (flow regimes; i.e., front -to-rear ascending flow)

• <u>Anvil</u>:

Relatively small changes in latent heating profile

- MCS simulations partitioned into Convective, Stratiform and Anvil regions
 - ASCENDING <u>Convective</u>: (a) Convective (b) Stratiform II MCS **FRONT-TO-REAR** 16 ~Linear decrease over FLOW PICKS UP IN 12 Altitude (km) time with constant shape MATURF PHASE -8 **TRANSPORTS** 4 MOISTURE AND Stratiform: MOMENTUM TO **Profile shape** 15 30 45 -10 -5 0 -15 0 5 Latent Heating (K hr⁻¹) Latent Heating (K hr ating (K hr⁻¹) **STRATIFORM** evolves with time VERTICAL VELOCITIES REGION (flow regimes; i.e., front WEAKEN OVER TIME Ime -to-rear ascending flow)

• <u>Anvil</u>:

Relatively small changes in latent heating profile

• MCS simulations partitioned into Convective, Stratiform and Anvil regions

• <u>Anvil</u>:

Relatively small changes in latent heating profile

- MCS simulations partitioned into Convective, Stratiform and Anvil regions
- <u>Convective</u>: ~Linear decrease over time with constant shape

Stratiform: Profile shape evolves with time (flow regimes; i.e., front -to-rear ascending flow)

• <u>Anvil</u>:

Relatively small changes in latent heating profile

- MCS simulations partitioned into Convective, Stratiform and Anvil regions
- <u>Convective</u>: ~Linear decrease over time with constant shape

Stratiform: Profile shape evolves with time (flow regimes; i.e., front -to-rear ascending flow)

• <u>Anvil</u>:

Relatively small changes in latent heating profile

- MCS simulations partitioned into Convective, Stratiform and Anvil regions
- <u>Convective</u>: ~Linear decrease over time with constant shape

Stratiform: Profile shape evolves with time (flow regimes; i.e., front -to-rear ascending flow)

• <u>Anvil</u>:

Relatively small changes in latent heating profile

Aerosol Indirect Effects on MCS Anvil Clouds

(Saleeby et al., 2016: In Review)

Che the St

http://www.nasa.gov/topics/earth/features/astronauts_eyes/iss016e27426.html

MCS Anvils and Aerosol Indirect Effects

- High-level cirrus anvil clouds are important to earth's energy budget through their radiative effects. (e.g. Ramanathan and Collins 1991; Fowler and Randall 1994; Stephens 2005)
- Ice water content, ice crystal size, and anvil thickness impact the radiative properties of these clouds. (e.g. Platt and Harshvardhan 1988; Platt 1989)
- To study the impact of aerosol on MCS anvils clouds, sensitivity simulations conducted
- Aerosol profiles guided by MC3E observations
 - UND-Citation data used to constrain IN via DeMott et al. (2010) parameterization
 - Both profiles constrained by ARM-SGP site particle observations at surface

Impacts on Microphysics and Radiation

- An increase in aerosol \bullet concentration led to:
 - Greater number of smaller ice crystals from homogeneous freezing of more numerous, smaller lofted cloud droplets
 - Reduced mixing ratios of cloud ice in the upper levels due to greater rime collection of the largest cloud droplets at lower altitudes
- **Cloud Ice Mixing Ratio** Cloud Ice # Conc. 17 17 а b HIGH LOW 15 15 CCN: Height (km) 6 11 12 12 13 CCN: 13 more more ice numbers of 11 mass aloft ice particles (less riming) 9 **May 20** 7 0.1 0.2 0.3 20 40 0.0 0.4 0.5 0 60 80 100 Cloud Ice Mixing Ratio (g/kg) Cloud Ice Number (/mg)

Top-of-Atmosphere Outgoing longwave radiation (W m⁻²)

Cloud Top Albedo

Enhanced albedo from more numerous, smaller ice particles

Reduction in outgoing long-wave radiation due to less anvil mass and/or emission at higher altitude

Impacts of the Vertical Distribution of Aerosol on MCS Precipitation

(Marinescu et al., 2016: In Prep.)

http://www.nasa.gov/vision/earth/environment/centr al_am_fires_prt.htm

Biomass Burning Particle Transport

 Plumes of aerosol particles that are transported into the southern U.S.

(e.g. Rogers and Bowman, 2001; Wang et al., 2006)

- Can occur at various altitudes (e.g., Peppler et al., 2000)
- Simulations are initialized with different aerosol profiles
 - Initialized horizontally homogeneous
- Mid-level (ML) vs. Low-level (LL) aerosol profile tests
 - Aerosol layer elevation based on NAAPS
 - Total integrated aerosol mass was kept constant
 - Clean (CLE) simulation used to assess the impact of ML aerosol

Smoke Concentrations (µg m⁻³)

From the Navy Aerosol Analysis and Prediction System (NAAPS Model): May 20 2011 00Z

Aerosol Impacts on MCS Precipitation

Cross section of MCS precipitation rates during the mature stage (May 20 event)

precipitation

effects

ullet

 \bullet

ML

(e.g., Tao et al., 2007; Fan et al., 2009; Storer et al., 2010)

Summary

- CCN data used to initialize RAMS simulations and to relate aerosol physical properties to CCN characteristics for modeling
- Simulations were conducted with RAMS of two MCS events that occurred during MC3E (20 May 2011 and 23-24 May 2011)
 - Compared well to observations taken during MC3E, including precipitation, radar reflectivity, vertical velocities and convective/stratiform areas
- The evolution and magnitude of latent heating profiles within MCS regions was quantified
- MCS sensitivity studies to both surface aerosol concentrations and the vertical distribution on aerosol were completed