Agenda for today

- Working group aims (Nicole Riemer)
- Project updates (5 min each)
 - Ryan Moffet
 - Cari Dutcher
 - Mary Gilles
 - Gourihar Kulkarni
 - Claudio Mazzoleni
 - Kerri Pratt
 - Joseph Ching
 - Laura Fierce
 - Hailong Wang
 - Rahul Zaveri
 - Matthew West
 - Art Sedlacek
 - Allison Aiken
 - Alla Zelenyuk
- Summary of progress (Nicole Riemer)
- Discussion (everyone)
 - Jian Wang's request: feedback on aerosol measurement needs/priorities

Aerosol Populations in Current Models

Real Particles in the Atmosphere

Li et al., Atmospheric Environment, 45, 2488-2495, 2011

How much detail is needed to capture aerosol impacts in large scale models?

How important are these details?

Key question 1:

What is the impact of mixing state on CCN, IN, optical properties?

Key question 2:

How should we include mixing state information in models that quantify aerosol climate impacts?

- What aerosol mixing states exist in different environments?
- How can we connect measurements (lab and field) to each other and to modeled mixing state information?
- What mixing state information should be measured in the field and in the lab?

Two Definitions of "Mixing State"

Population mixing state:

Distribution of chemical compounds across the particle population.

Morphological mixing state:

Distribution of chemical compounds within and on the surface of each particle.

Partially

Embedded encapsulated-2

Agenda for today

- Working group aims (Nicole Riemer)
- Project updates (5 min each)
 - Ryan Moffet
 - Cari Dutcher
 - Mary Gilles
 - Gourihar Kulkarni
 - Claudio Mazzoleni
 - Kerri Pratt
 - Joseph Ching
 - Laura Fierce
 - Hailong Wang
 - Rahul Zaveri
 - Matthew West
 - Art Sedlacek
 - Allison Aiken
 - Alla Zelenyuk
- Summary of progress (Nicole Riemer)
- Discussion (everyone)
 - Jian Wang's request: feedback on aerosol measurement needs/priorities

Challenge questions

- Can we compare models from different levels of the model hierarchy to verify the mixing state representations, mechanisms and impacts?
 - a) what might this look like?
 - b) who is going to do it?
 - c) what funding do we need to make this happen?

Common theme: requires people from different groups and backgrounds to come together.

Challenge questions

- How do we compare mixing state information between measurement platforms and models?
 - a) population mixing state information
 - b) morphology mixing state information
- How do we use measurements (lab and field) and theory to create and validate mechanisms for:
 - a) mixing state *evolution*?
 - b) mixing state *impacts* on IN/CCN/OP?

Common theme: requires people from different groups and backgrounds to come together.

Connections between Different Tools

	Theory/ Metrics ¹	PRM ²	RM/ GCM ³	$SP2^4$	Micros- copy ⁵	SP mass spectro- metry ⁶	Remote sensing ⁷	Bulk measure- ments ⁸
Theory/ Metrics ¹		high	low	medium	medium	low	low	low
PRM ²	high		low	medium	low	low	low	high
RM/ GCM ³	low	low		low	low	low	high	medium
SP2 ⁴	medium	medium	low		low	low	low	high
Micros- copy ⁵	medium	low	low	low		low	low	medium
SP mass spetro- metry ⁶	low	low	low	low	low		low	medium
Remote sensing ⁷	low	low	high	low	low	low		high
Bulk measure- ments ⁸	low	high	medium	high	medium	medium	high	

Bottleneck:

Lack of comparable mixing state outputs between many tools

Table 2: Assessment of current abilities to connect data and outputs amongst different tools. The lack of comparable mixing state outputs between many tools is a key bottleneck in our ability to understand mixing state impacts.