Spectrally-invariant properties of clouds in transition zones during MAGIC

W. Yang^{1,2}, A. Marshak¹, P. McBride³, C. Flynn⁴, S. Schmidt⁵, C. Chiu⁶, and E. Lewis⁷ ¹NASA GSFC, ²USRA, ³ASTRA, ⁴PNNL, ⁵U. Colorado, ⁶ U. Reading, ⁷BNL

Motivations

- MAGIC's time-resolved hyper-spectral measurements reveal more details of cloud types/structure as well as cloud aerosol interactions.
- Retrievals of cloud and aerosol properties depend on accuracy of radiance measurements. We want to know how effective it can be to use redundant hyper-spectrum radiation measurements from SSFR and SASze in studying the cloud properties near cloud edges.

Transition zone

• What is transition zone?

 Why it is important to study the cloud in transition zone?

Intr. To Spectral invariance (1) spectrum in the transition zone

300 s of SWS data, 18 May 2007, SZA=45°

250 s; cloud base height = 2 km

circled cloud passed thru SWS field of view

SWS data, 18 May 2007, SZA=45°

Spectral-invariant hypothesis

 $I_{transition}(\lambda) = aI_{cloudy}(\lambda) + bI_{clear}(\lambda)$

$$\frac{I_{transition}(\lambda)}{I_{clear}(\lambda)} = a \frac{I_{cloudy}(\lambda)}{I_{clear}(\lambda)} + b$$

$$y(\lambda) = ax(\lambda) + b$$

e.g. A. Marshak et al, 2009, 2011; J.C. Chiu, et al, 2010.

Testing spectral-invariance hypothesis with SWS data

Testing with SBDART model: spectra omitting absorption bands (I), spectral-invariant plot (r)

Intr. To Spectral invariance (2) applications

 How do we apply the discoveries to help us understand the cloud property in the transition zone.

- Observing the variations of the *a* and *b*.
- NIR intercept are significantly affected by the effective radius of droplet.
- VIS slopes are affected by the cloud optical depth.

Modeled slope and intercept

400 - 870 nm

1530 -1660 nm

Radiation Instruments

Solar Array Spectrophotometer

SAS-Ze

CIMEL Sunphotometer operated in cloud mode

Same family (NASA Ames) as the Shortwave Spectradiometer (SWS) at SGP

The difference between the two hyperspectrum instruments

Before self-normalization

after self-normalization

 $I'(t, \lambda) = I(t, \lambda)/I(t_0, \lambda)$

Two examples

The HSRL lidar profiles and TSI (Total Sky Imager) images during cloudy-to-clear sky transitions on 2013-07-10 (**Upper left**) and on 2013-07-12 (**Upper right**). (a) and (b) are zenith radiances @500nm from 3 instruments on 07-10 and 07-12, respectively.

Time-series of slopes and intercepts calculated for both instruments. Left Column: case of 2013-07-10. Right Column: case of 2013-07-12. (a) and (c) VIS slope. (b) and (d) NIR intercept.

Two limiting scenarios in cloud and air mixing:

Homogeneous Mixing

Drier air penetrates the cloud before cloud drop evaporates.

Reduction in size of *all* droplets but no substantial change in the number of cloud droplets.

e.g. Baker et al. (1980); Baker and Latham (1982); Lehmann et al., (2009); Lu et al., (2013)

Inhomogeneous Mixing

Cloud drop evaporates before dry air penetrates the entirety of the cloud.

Reduction in the droplet number concentration for droplets of *all* sizes but no change in the cloud drop spectrum.

Another example

Case of 2013-07-07 with a transition time ~21:49:00. (a) is the HSRL lidar profiles and TSI (Total Sky Imager) images during cloudy-to-clear sky. (b) are zenith radiances @500nm from 2 instruments. (c) is the VIS slope. (d) is the NIR intercept.

Summary:

- In the spectral-invariant approx., the VIS slope is determined by cloud opt. depth, while the NIR intercept is negatively correlated with droplet sizes.
- In the cloud-to-clear transition zones, ~2/3 cases of NIR intercept do not change significantly near cloud edges.
- Results indicate that cloud-air mixing is predominantly inhomogeneous near cloud edges.
- The spectrally invariant method and the redundant hyperspectrum measurements co-work effectively for providing cloud droplet size information in transition zone.