Recent Efforts to use Small Unmanned Aircraft in Studying the Arctic Atmosphere: An Overview of COALA and ERASMUS

Gijs de Boer^{1,2}

with substantial contributions from (alphabetical): Brian Argrow¹, Al Bendure³, Geoff Bland⁴, Nathan Curry¹, Phillip D'Amore¹, Jack Elston⁵, Will Finamore¹, Ru-Shan Gao², Terry Hock⁶, Mark Ivey³, Dale Lawrence¹, Gabe LoDolce¹, Chuck Long^{1,2}, James Mack¹, Tevis Nichols¹, Scott Palo¹, Beat Schmid⁷, Hagen Telg^{1,2}, Doug Weibel¹

(4)

(5) **B**

(2)

ift (6) NCAR

Access to Airspace

-149.93 -149.92 -149.91 -149.9 -149.89 -149.88 -149.87 -149.86 -149.85 Longitude

-149.92 -149.915 -149.91 -149.905 -149.9 -149.895 -149.89 -149.885 -149.88 -149.875 -149.87 Longitude

-149.92 -149.915 -149.91 -149.905 -149.9 -149.895 -149.89 -149.885 -149.88 -149.875 -149.87 Longitude

Altitude (m)

Morrison et al., 2012

CU Pilatus

de Boer et al., 2016b

∕<u>5</u>0-100 m

Acknowledgments and References

Funding/Support:

References:

- de Boer, G., M. D. Ivey, B. Schmid, S. McFarlane, and R. Petty, 2016a: Unmanned platforms monitor the Arctic atmosphere, *Eos, 97.*
- de Boer, G., S. Palo, B. Argrow, G. LoDolce, J. Mack, R.-S. Gao, H. Telg, C. Trussel, J. Fromm, C.N. Long, G. Bland, J. Maslanik, B. Schmid and T. Hock, 2016b: **The Pilatus Unmanned Aircraft System for Lower Atmospheric Research**, *Atmos. Meas. Tech.*, in review.
- Gao, R.-S., Telg, H., McLaughlin, R., Ciciora, S., Watts, L., Richardson, M., Schwarz, J., Perring, A., Thornberry, T., Rollins, A., Markovic, M., Bates, T., Johnson, J., and Fahey, D., 2016: A light-weight, highsensitivity particle spectrometer for PM2.5 aerosol measurements, *Aerosol Sci. Tech.*, 50, 88–99.
- Long, C.N., A. Bucholtz, H. Jonsson, B. Schmid, A. Vogelmann and J. Wood, 2009: A method for correcting for tilt from horizontal in downwelling shortwave irradiance measurements on moving platforms, *Open. Atmos. Sci. J.*, **4**, 78-87.
- Morrison, H., G. de Boer, G. Feingold, J.Y. Harrington, M.D. Shupe and K. Sulia (2012): Resillience of Persistent Arctic Mixed-Phase Clouds, *Nature Geosci.*, 5, 11-17.

COALA: Lessons Learned

CU Pilatus

Delta-T SPN-1 (Broadband Shortwave)

- 0.4-2.700 µm
- < 200 ms response time
- 140 mm x 100 mm, 940 g
- Pilatus will fly with three SPN-1s up and down unshielded, and upward looking with shielding pattern to separate between direct and diffuse radiation for aircraft attitude correction (See Long et al., 2009 for details on the correction)

Kipp and Zonen CGR4 (Broadband Longwave)

- 4.5-42 µm
- 18 s response time (95%)
- 79 mm x 72.5 mm, 600 g
- 180 degree FOV
- Pilatus will fly with two CGR4s up and down looking

Printed Optical Particle Spectrometer (POPS)

- Developed by Ru-Shan Gao and colleagues (NOAA ESRL Chemical Sciences Division, Gao et al., 2016)
- Provides aerosol size distributions for particles between 140-3000 nm
- Inlet and tubing to be heated in order to provide dry size distributions and prevent icing
- Approximately 1 kg total weight, including battery (~800 g total), requires ~3 W of power
- Approximate dimensions: 15x10x7.6 cm (spectrometer), 13x10x2.5 (electronics)
- Weather balloon deployable