Contrasting Ice Production Characteristics in Stratiform Mixed-phase Clouds over the North and South Poles

Damao Zhang1, Zhien Wang2, Andrew Vogelmann1, Dan Lubin3

1Brookhaven National Laboratory
2University of Wyoming
3Scripps Institution of Oceanography

0313, 2017
Different Aerosol and Dynamical Environment

- NSA, a polluted and less dynamically active state.
- McMurdo, a pristine, colder, and more dynamically active state.
- Coincident lidar and cloud radar measurements for identifying stratiform mixed-phase clouds

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA</td>
<td>2011.07-2015.12</td>
<td></td>
</tr>
<tr>
<td>Barrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWARE</td>
<td>2015.12-2017.01</td>
<td></td>
</tr>
<tr>
<td>McMurdo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(AWR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CloudSat</td>
<td>2006.06-2010.06</td>
<td></td>
</tr>
<tr>
<td>CALIPSO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cloud radars and lidars at McMurdo
- Annual stratiform cloud occurrence of 30% at NSA and 24% at AWR.
- Maximum occurrences during Summer at both NSA and AWR.
Most stratiform clouds have cloud top temperatures (CTTs) in the range between -40 and 0 °C.
Ice Production Characteristics in Polar Stratiform Mixed-phase Clouds (SMCs)

- A-Train measurements over entire Arctic and Antarctic.
- Z_{e_layer} (mean Z_e between cloud top and 500 m below) strongly depends on cloud top temperature (CTT).
- Strong seasonal variations of Z_{e_layer} over the Arctic.
A-Train measurements within a 5° (Latitude) x 10° (Longitude) box centered in NSA and McMurdo.

AWR has maximum Z_{e_layer} during austral Summer and minima during Winter.
Ice Production Characteristics in Polar SMCs

- Ground-based remote sensing measurements over NSA and McMurdo.
- Spring season has the smallest LWP at all CTTs and the largest IWP and N_{ice} at CTT lower than -15 °C.
- Higher IWP and N_{ice} during Spring season could be related to more dust events (Zhao, 2012).
- LFs are high (>0.8) most of the time, different than in convective clouds.
CloudSat DO-op mode: Relax the distance criteria to find closest 5 CALIOP profiles.
Global Cloud Thermodynamic Phase Distribution
Mass Liquid Water Fractions

![Graph showing Mass Liquid Water Fractions vs. CTT (°C)]